10.03.2009

Neue Nanodrähte aus 'Schmierstoff'

Dresdner Wissenschaftler demonstrierten die Überlegenheit von Nanodrähten aus Molybdänsulfid in Experiment und Simulation



Nanoröhren aus Kohlenstoff gelten wegen ihrer herausragenden physikalischen und chemischen Eigenschaften als Top-Kandidaten, um mikroelektronische Bauelemente weiter zu miniaturisieren und das heute gängige Silizium eines Tages zu verdrängen. Der technologischen Anwendung stehen jedoch ungünstige Material-Eigenschaften entgegen wie etwa das Zusammenkleben der Röhrchen. Wissenschaftler der TU Dresden und des Forschungszentrums Dresden-Rossendorf (FZD) demonstrierten die Überlegenheit von Nanodrähten aus Molybdänsulfid in Experiment und Simulation und veröffentlichten ihre Ergebnisse vor kurzem in dem Fachjournal „Nano Letters“.



Abb.: Nanodrähte aus Molybdänsulfid: (a) gibt einen Vergleich gemessener und berechneter Elektronenverteilung für einen dreipoligen Draht (oben: experimentelles STM-Bild, unten: berechnete DFT-Elektronendichte), (b) zeigt schematisch das Verdrillen eines Einzeldrahtes, durch das der Draht seine elektrische Leitfähigkeit verliert. (Bild: Gemming, FZD und TU Dresden)


Seit der Entdeckung der Kohlenstoff-Nanoröhren im Jahr 1991 arbeiten Wissenschaftler intensiv daran, die Nanoröhren für unterschiedlichste Technologien zu erschließen: man erhofft sich Nanoröhren-Transistoren oder Nanoröhren-Speicher aus Kohlenstoff. Die nur wenige millionstel Millimeter kleinen Röhrchen könnten aber auch in der Medizin oder in neuen Bildschirmgenerationen zum Einsatz kommen, wären da nicht einige hinderliche Eigenschaften bei der Integration zu überwinden. So gelingt die elektronisch oder sogar strukturell sortenreine Herstellung der Nanoröhren nur mit aufwendigen Hilfsmitteln, die Röhrchen sind schwach löslich und verkleben zu Bündeln. Auch lassen sie sich nur schlecht elektrisch kontaktieren, was ihren Einsatz in der Mikroelektronik erschwert. Prototypen für unterschiedliche Anwendungen konnten zwar in Labors weltweit schon gefertigt werden, doch spielen Kohlenstoff-Nanoröhren heute für den Markt kaum eine Rolle.

Das Dresdner Forscherteam um Gotthard Seifert von der TU Dresden und Sibylle Gemming vom FZD interessiert sich seit Jahren für Molybdänsulfid (MoS), das als Schmierstoff oder als Beimengung in Katalysatoren vielfach industriell genutzt wird. Für die Substanz gilt, dass die physikalischen und chemischen Eigenschaften deutlich stärker mit der Partikelgröße und -form variieren als bei anderen Materialien. In Zusammenarbeit mit der Gruppe von Prof. Flemming Besenbacher (Universität Aarhus, Dänemark) gelang nun die Herstellung und vollständige experimentelle wie theoretische Charakterisierung von MoS-Drähten, die mit überragenden Vorteilen aufwarten können: als metallische Drähte sind sie sehr stabil, sie verkleben nicht so leicht wie ihre Verwandten aus Kohlenstoff, sie haben sehr gute elektronische Transport-Eigenschaften und sie lassen sich relativ einfach zu einem Halbleiter umwandeln, indem man sie verdreht. Jedes halbleitende Material besitzt eine typische Bandlücke, die für die konkreten elektronischen und optischen Eigenschaften verantwortlich ist. Bei MoS-Drähten ist interessant, dass diese Bandlücke linear mit dem Verdrillungswinkel mitwächst, was einen möglichen Einsatz als Nano-Schalter nahelegt. Erstaunlich ist zudem die einfache Kontaktierung der MoS-Drähte mit Gold-Elektroden, wobei der Kontakt besonders stark ist: einige wenige Schwefelatome verankern den Draht am Gold, während der Stromfluss direkt durch den zentralen Gold-Molybdän-Kanal erfolgt.

Mit derart überzeugenden Eigenschaften der Molybdänsulfid-Drähte hatten nicht einmal die Wissenschaftler gerechnet. Sibylle Gemming: „Die Berechnungen zeigen, dass viele der Nachteile, die mit den Kohlenstoff-Nanoröhren einhergehen, für Molybdänsulfid-Drähte nicht zu erwarten sind. Hinzu kommt, dass sie mit allen Vorteilen von Kohlenstoff-Nanoröhren ausgestattet sind. Die neuen Nanodrähte haben deshalb ein echtes Potential für zukünftige elektronische Bauelemente.“ Seifert von der TU Dresden fügt hinzu: „Die Nanodrähte aus ‚Schmierstoff’ haben uns auf sehr angenehme Weise überrascht. Als nächstes wollen wir daraus nanoelektronische Schaltkreise bauen.“

Neben reinen Molybdänsulfid-Drähten untersuchten die Forscher auch Drähte, deren Eigenschaften durch Zugabe weiterer Elemente modifiziert wurden. Auch diese Verbindungen zeigten sich in den Berechnungen wie im Experiment als vielversprechend.

FZD


Weitere Infos:


AL

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Photo
14.09.2023 • NachrichtForschung

Knick im Jet

Verbogener Jet aus supermassereichem schwarzem Loch vermutlich auf Präzession der Jet-Quelle zurückzuführen.

Themen