16.10.2023

Neuer Blick auf altbekannte Kernreaktion

Neue Messung zeigt langsameren Einbrennprozess des Wasserstoffbrennens.

Die nukleare Astrophysik untersucht die Entstehung der Elemente im Universum seit dem Urknall. Ihre Modelle verwenden Parameter, die die Forscher aus Messdaten gewinnen. Eine wichtige Rolle spielen dabei Kernreaktionen, die im Inneren der Sterne ablaufen. Ein Team des Helmholtz-Zentrums Dresden-Rossendorf hat jetzt gemeinsam mit Wissenschaftlern aus Italien, Ungarn und Schottland am Dresdner Felsenkeller-Beschleuniger erneut eine der zentralen Reaktionen untersucht – mit einem überraschenden Ergebnis.

Abb.: Neuer Blick auf altbekannte Kernreaktion: Beim Zusammenprall eines...
Abb.: Neuer Blick auf altbekannte Kernreaktion: Beim Zusammenprall eines Kohlenstoffkerns mit einem Wasserstoffkern entsteht das Isotop Stickstoff-13 und Gammastrahlung wird frei.
Quelle: B. Schröder, HZDR

„Wir haben eine altbekannte Kernreaktion unter die Lupe genommen, die für die Elemententstehung in massereichen Sternen bedeutsam und darüber hinaus eine der frühesten ist, die im Labor mit Beschleunigern untersucht wurde: Die Kollision eines Wasserstoffkerns mit einem Kohlenstoffkern, in deren Folge das Isotop Stickstoff-13 entsteht und Gammastrahlung freigesetzt wird. Sie ist der erste Schritt des sogenannten CNO-Zyklus, auch als Bethe-Weizsäcker-Zyklus bekannt. Wir waren vor allem am Wirkungsquerschnitt dieser Reaktion interessiert, der Auskunft über die Wahrscheinlichkeit ihres Auftretens gibt“, sagt Daniel Bemmerer vom HZDR-Institut für Strahlenphysik.

Diesen Parameter hat das Team im Untertagelabor Felsenkeller jetzt mit bisher beispielloser Präzision bestimmt. Das überraschende Ergebnis: Der bisher akzeptierte Wert muss um etwa 25 Prozent nach unten korrigiert werden. Das Ergebnis legt nahe, dass das Einbrennen des CNO-Zyklus länger gedauert hat als bisher gedacht und die Emission solarer 13N-Neutrinos im Mittel näher am Zentrum der Sonne stattfindet als vermutet. Die neuen Daten erlauben zudem genauere theoretische Vorhersagen für das Verhältnis der Kohlenstoff-Isotope 12C und 13C in Sternen, die wiederum helfen, Modelle für die Vorgänge in deren Innerem zu überprüfen und zu verbessern.

Sterne beziehen ihre Energie aus der Fusion von Wasserstoff zu Helium. In Abhängigkeit der Masse des Himmelskörpers sind dafür unterschiedliche Prozesse bekannt. So läuft in massearmen Sternen wie unserer Sonne vor allem die Proton-Proton-Kette ab. In massereichen Sternen pressen die starken Gravitationskräfte die Wasserstoffkerne jedoch so sehr zusammen, dass hier deutlich höhere Temperaturen herrschen. Dadurch können die Wasserstoffkerne zusätzlich mit Kohlenstoffkernen reagieren. Obwohl diese keine zwei Prozent der interstellaren Materie ausmachen, aus der Sterne entstehen, reicht diese Konzentration aus, um den CNO-Zyklus in Gang zu bringen und am Laufen zu halten. Sie wirken dabei als Katalysator: Sie beschleunigen die Reaktion, ohne jedoch selbst dabei verbraucht zu werden. Die Netto-Reaktion ist am Ende die gleiche wie beim Proton-Proton-Zyklus: die Fusion von Wasserstoff zu Helium. Doch in Sternen mit CNO-Zyklus läuft diese Reaktion wesentlich schneller ab.

„Als Targets verwenden wir Scheiben aus Tantal, auf die Kohlenstoff aufgedampft ist. Darauf schießen wir Protonen, die aus unserem 5-MV-Pelletron-Beschleuniger stammen und einen relativ weiten Energiebereich überstreichen. Die bei der Reaktion entstehenden Gammaquanten können wir mit zwanzig empfindlichen Reinstgermanium-Detektoren nachweisen“, schildert Bemmerer das experimentelle Vorgehen.

Das gemeinsam vom HZDR und der TU Dresden betriebene Untertagelabor Felsenkeller im Plauenschen Grund ist für solche Messungen optimal. Eine 45 Meter dicke Felsschicht im Stollen des ehemaligen Eislagers der Dresdner Felsenkeller-Brauerei schützt die Detektoren vor kosmischer Strahlung, deren Hintergrundsignale die Ergebnisse verfälschen können.

HZDR / RK


EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen