Neues Material für Batterie-Anoden
Lithium-Lanthan-Titanat kann Energiedichte, Laderate und Lebensdauer von Batterien verbessern.
Ein vielversprechendes Anodenmaterial für künftige Hochleistungsbatterien haben Forscher am Karlsruher Institut für Technologie KIT und an der Jilin-Universität in Changchun in China untersucht: Lithium-Lanthan-Titanat mit Perowskit-Kristallstruktur (LLTO). LLTO kann die Energiedichte, Leistungsdichte, Laderate, Sicherheit und Lebensdauer von Batterien verbessern, ohne dass eine Verkleinerung der Partikel von der Mikrometer- auf die Nanometerskala erforderlich ist.
Möglichst viel Energie auf möglichst kleinem Raum bei möglichst geringem Gewicht zu speichern – diese Anforderung erfüllen Lithium-Ionen-Batterien (LIB) nach wie vor am besten. Die Forschung zielt darauf, Energiedichte, Leistungsdichte, Sicherheit und Lebensdauer dieser Batterien zu steigern. Dabei kommt es wesentlich auf die Elektrodenmaterialien an. Anoden in LIB bestehen aus einem Stromableiter und einem darauf aufgebrachten Aktivmaterial, in dem Energie in Form chemischer Bindungen gespeichert wird. Als Aktivmaterial dient ganz überwiegend Graphit. Negative Elektroden aus Graphit haben allerdings eine niedrige Laderate. Zudem weisen sie Sicherheitsprobleme auf. Unter den alternativen Aktivmaterialien wurde Lithium-Titanat-Oxid (LTO) bereits kommerzialisiert. Negative Elektroden mit LTO bieten eine höhere Laderate und gelten als sicherer als solche mit Graphit. Allerdings haben LIB mit LTO-Anoden tendenziell eine niedrigere Energiedichte.
Das Team um Helmut Ehrenberg, Leiter des Instituts für Angewandte Materialien – Energiespeichersysteme (IAM-ESS) des KIT, hat nun ein weiteres vielversprechendes Anodenmaterial erforscht: Lithium-Lanthan-Titanat mit Perowskit-Kristallstruktur (LLTO). Wie die gemeinsam mit Wissenschaftlern der Jilin-Universität und weiterer Forschungseinrichtungen in China und Singapur durchgeführte Studie ergeben hat, weisen LLTO-Anoden im Vergleich zu kommerzialisierten LTO-Anoden ein niedrigeres Elektrodenpotenzial auf, wodurch sich eine höhere Zellspannung und eine höhere Kapazität erreichen lassen. „Zellspannung und Speicherkapazität bestimmen letztendlich die Energiedichte einer Batterie“, erklärt Ehrenberg. „Künftig könnten LLTO-Anoden besonders sichere und langlebige Hochleistungszellen ermöglichen.“
Neben Energiedichte, Leistungsdichte, Sicherheit und Lebensdauer entscheidet auch die Laderate über die Eignung einer Batterie für anspruchsvolle Anwendungen. Grundsätzlich hängen maximaler Entladestrom und minimale Ladezeit vom Ionen- und Elektronentransport im Festkörper und an den Grenzflächen zwischen Elektroden- und Elektrolytmaterialien ab. Um die Laderate zu verbessern, ist es üblich, die Partikelgröße des Elektrodenmaterials von der Mikrometer- auf die Nanometerskala zu reduzieren. Bei LLTO ermöglichen aber selbst Partikel von einigen Mikrometern eine höhere Leistungsdichte und eine bessere Laderate als LTO-Nanopartikel. Dies führt das Forscherteam auf pseudokapazitive Eigenschaften von LLTO zurück: An diesem Anodenmaterial lagern sich nicht nur einzelne Elektronen an, sondern ladungstragende Ionen, die über schwache Kräfte gebunden sind und reversibel Ladungen an die Anode übertragen können. „Dank der größeren Partikel ermöglicht LLTO prinzipiell einfachere und kostengünstigere Verfahren der Elektrodenherstellung“, sagt Ehrenberg.
KIT / JOL