Offenes Quantensystem zeigt universelles Verhalten
Neue Studie hilft zu verstehen, wie Quantensysteme in ein Gleichgewicht übergehen.
Universelles Verhalten ist eine zentrale Eigenschaft von Phasenübergängen, die sich etwa bei Magneten zeigt, die ab einer bestimmten Temperatur nicht mehr magnetisch sind. Einem Forscherteam aus Kaiserslautern, Berlin und dem chinesischen Hainan ist es erstmals gelungen, ein solches universelles Verhalten in der zeitlichen Entwicklung eines offenen Quantensystems, einem einzelnen Cäsium-Atom in einem Bad aus Rubidium-Atomen, zu beobachten. Diese Erkenntnis hilft zu verstehen, wie Quantensysteme in ein Gleichgewicht übergehen. Das ist etwa für die Entwicklung von Quantentechnologien von Interesse.
In einem Experiment lässt sich ein universelles Verhalten bei einem Phasenübergang gezielt induzieren, in dem man einen Parameter wie Druck, Magnetismus oder aber die Temperatur ändert. Das Besondere ist nun, dass sich dieses Verhalten einer physikalischen Größe „durch wenige kritische Parameter beschreiben lässt, die wiederum unabhängig von den Details des betrachteten Systems sind“, sagt Artur Widera, der an der Rheinland-Pfälzischen Technischen Universität Kaiserlautern-Landau (RPTU) das Lehrgebiet Individual Quantum Systems leitet. Lässt sich dieses universelle Verhalten auch in der Quantenwelt, also auf atomarer und subatomarer Ebene beobachten?
In der aktuellen Studie hat das Forscherteam dafür einzelne Cäsium-Atome in einem bestimmten Quantenzustand gebracht und diese in ein Gas aus Rubidium-Atomen eingetaucht. Bei dieser Kombination aus einem einzelnen Quantensystem (Cäsium), das mit dem Rubidium-Bad wechselwirkt, spricht man von einem offenen Quantensystem. Sowohl die Cäsium-Atome als auch die Rubidium-Atome wurden dazu bis fast an den absoluten Nullpunkt abgekühlt. „Im Gegensatz zu den üblichen Beobachtungen war in unserem Versuch die Zeit der Parameter, der einen kritischen Punkt, oder kritische Zeit, erreichen soll“, sagt Jens Nettersheim.
Dazu mussten die Forscherinnen und Forscher das Quantensystem mit sehr viel Energie anregen. „Was wir nun beobachtet haben, ist, dass in der zeitlichen Entwicklung des Systems die Entropie erst einmal zunimmt“, ergänzt Ling-Na Wu, die als theoretische Physikerin das Projekt begleitet hat. Entropie beschreibt die Möglichkeit von Teilchen sich in einem System anzuordnen – wie in diesem Fall die Cäsium- und Rubidium-Atome. Je größer die Unordnung in einem System ist, desto höher ist die Entropie und umgekehrt. Wu: „Dies geschieht so lange, bis die Entropie ihren maximalen Wert erreicht, der dann wieder abnimmt.“
Genau an diesem Punkt, der kritischen Zeit, setzt das universelle Verhalten des Quantensystems ein. Dazu erläutert André Eckardt von der Technischen Universität Berlin: „Zu dieser Zeit passiert nun Folgendes: Im übertragenen Sinne verliert das System seine Erinnerung an das, was früher passiert ist, beziehungsweise an den genauen Anfangszustand. Die folgende Dynamik ist universell.“ In der Physik bedeutet das, dass sich das Verhalten mit einer Formel und einem Parameter beschreiben lässt. Die Studie zeigt nun, dass es in offenen Quantensystemen universelle Verhalten bezüglich der Zeit gibt.
Mit dieser Arbeit tragen die Physikerinnen und Physiker dazu bei, grundlegende Funktionsweisen solcher Systeme besser zu verstehen. „Es ist immer noch nicht ganz klar, wie solche offenen Quantensysteme Energie abgeben, also relaxieren, und wie genau ein thermodynamisches Gleichgewicht erreicht wird“, erläutert Widera. Viele technische Anwendungen funktionieren heutzutage nur dank der Quantentechnologie, die darin verbaut ist. Zukünftig wird sie eine immer größere Rolle spielen, wie etwa bei Quantencomputern oder Quantensensoren. Daher ist es wichtig, zu verstehen, was in solchen Systemen passiert und wie sie mit ihrer Umgebung wechselwirken.
RPTU / JOL