Photonen auf der Überholspur
Photonischer topologischer Isolator als extrem effizienter Lichtleiter.
Forscher der Universität Rostock haben ein neuartiges mikrostrukturiertes Material entwickelt, das Lichtsignale mit höherer Geschwindigkeit transportiert und sie dabei vor Streuung und äußeren Störquellen abschirmt. Solche photonischen topologischen Isolatoren (PTIs) sind künstliche Materialien, in denen Lichtteilchen in oberflächennahen Kanälen geführt werden, ohne dabei ins Innere gestreut werden zu können.
„Seit es uns das erste Mal gelungen ist, ein solches System zu realisieren, arbeiten wir an neuen Wegen, diese einzigartigen Materialien technologisch nutzbar zu machen“, sagt Alexander Szameit von der Universität Rostock. Wenngleich topologische Isolatoren Licht zwar schützen können, während es sich entlang definierter Pfade ausbreitet, ohne durch Störstellen oder äußere Einflüsse gestreut zu werden, kann dies auch zu einem Problem werden. „Regelmäßige Strukturen, wie sie normalerweise beim Design von PTIs zum Einsatz kommen, verlangsamen die Lichtausbreitung deutlich“, sagt Tobias Biesenthal. „Beim Versuch, Lichtsignale zu schützen, laden wir ihnen also unnötigen Ballast auf.“
Zur Lösung dieses Problems machte das Forscherteam einen Exkurs in die seltsame und ästhetische Welt der Fraktale. Fraktale Strukturen sind in der Natur allgegenwärtig. Fraktale zeichnen sich durch Selbstähnlichkeit aus, die unabhängig von der Vergrößerungsstufe Merkmale des Gesamtsystems in seinen Teilabschnitten wiederholt. Wird eine Struktur nicht nur ähnlich, sondern identisch wiederholt, spricht man von exakten Fraktalen. Das wohl bekanntestes Beispiel hierfür ist das Sierpinski-Dreieck – ein gleichseitiges Dreieck, welches in seinem Inneren durch ineinander verschachtelte Kopien seiner selbst unterteilt wird. Obwohl dieses Objekt leicht auf einem Blatt Papier zu skizzieren ist, beinhaltet es paradoxerweise keinerlei Fläche, denn jeder seiner Punkte kann im mathematischen Sinne einer der vielen Kanten zugeordnet werden.
In enger Zusammenarbeit mit Partnern aus Haifa (Israel) und Zhejiang (China) lösten die Rostocker Forscher die seit Langem bestehende Frage, ob topologische Isolatoren auch ohne Volumenmaterial konstruiert werden können, und nutzten ihre Erkenntnisse dazu, auf deren Kanten laufende Signale von ihrer Last zu befreien. „Wie ein Stein, den man über die Wellen der Ostsee springen lässt, rasen die Lichtteilchen entlang der äußeren Kanten unserer Struktur, ohne durch sein Inneres abgebremst zu werden,“ sagt Matthias Heinrich, Initiator der Arbeit. „Der entscheidende Unterschied ist, dass ein Stein nach einigen Sprüngen unvermeidlich an Schwung verliert und versinkt. Da unser neuartiges fraktales Material das Licht nachhaltig vor Streuung schützt, kann es dauerhaft auf der Überholspur bleiben.“
Das Ergebnis dieser erfolgreichen internationalen Kooperation stellt einen bedeutenden Fortschritt der Grundlagenforschung auf dem Gebiet der topologischen Photonik dar. Obwohl es noch einige Hürden zu überwinden gilt, bevor die dabei gewonnenen Erkenntnisse ihren Weg in unseren Alltag finden, eröffnen sie eine breite Palette an faszinierenden Möglichkeiten wie topologisch geschützte Hochleistungsschaltkreise für Licht sowie eine neue Klasse an vielseitigen synthetischen Materialien.
U. Rostock / JOL