Pikoskop blickt auf Valenzelektronen
Neuartiges Lichtmikroskop erreicht eine Auflösung von einigen zehn Pikometern.
Wissenschaftlern aus den Arbeitsgruppen von E. Goulielmakis vom Institut für Physik der Universität Rostock und dem Max-Planck-Institut für Quantenoptik in Garching ist es zusammen mit Mitarbeitern des Institutes für Physik der Chinesischen Akademie der Wissenschaften in Peking gelungen, ein neuartiges Lichtmikroskop mit einer Auflösung von einigen zehn Pikometern zu entwickeln. Erste Bilder zeigen, wie sich die Elektronenwolke im Kristallgitter von Festkörpern auf die Atome verteilt. Die Experimente ebnen den Weg zur Entwicklung einer neuen Klasse von laserbasierten Mikroskopen.
„Um das Innenleben des atomaren Mikrokosmos zu verstehen, nutzen Wissenschaftler seit Jahrzehnten Laserlichtblitze. Solche Laserblitze können ultraschnelle mikroskopische Prozesse im Inneren von Festkörpern verfolgen. Doch noch immer können Laserblitze die Elektronen nicht räumlich auflösen“, sagt Goulielmakis. Das heißt man kann nicht sehen, wie Elektronen den winzigen Raum zwischen den Atomen in Kristallen einnehmen und wie chemischen Bindungen gebildet werden. Um diese Beschränkung zu überwinden, gingen Goulielmakis und seine Mitarbeiter einen anderen Weg. Sie entwickelten ein neuartiges Mikroskop, das Pikoskop, das mit starken Laserpulsen arbeitet. „Ein starker Laserpuls kann Elektronen in kristallinen Materialien dazu zwingen, selbst zu einem Fotografen des umgebenden Raums zu werden. Wenn der Laserpuls in das Innere des Kristalls eindringt, kann er ein Elektron packen und es in eine schnelle, wackelnde Bewegung versetzen. Wenn sich das Elektron bewegt, spürt es den Raum um sich herum, genau wie ein Auto die unebene Oberfläche einer holprigen Straße spürt“, sagt Harshit Lakhotia, Doktorand in der Garchinger Forschungsgruppe von Goulielmakis.
Wenn die lasergetriebenen Elektronen eine von anderen Elektronen oder Atomen erzeugte Unebenheit überqueren, werden sie abgebremst. Der damit verbundene Energieverlust werde als Strahlung einer bestimmten Frequenz ausgesendet, die viel höher sei als die des Laserlichtes. „Indem wir die Eigenschaften dieser Strahlung aufzeichnen und analysieren, können wir die Form dieser winzigen Höcker ableiten und Bilder berechnen, die zeigen, wo die Elektronendichte im Kristall hoch oder niedrig ist“, sagt Hee-Yong Kim, Physiker aus der Arbeitsgruppe Extreme Photonik am Institut für Physik der Universität Rostock. „Das Laser-Pikoskop kombiniert die Fähigkeiten ins Innere undurchsichtiger Materialien wie mit Röntgenstrahlen zu blicken mit der Fähigkeit, freie Elektronen zu sondieren, was mit Rastertunnelmikroskopen nur auf Oberflächen möglich ist.“
Der theoretische Festkörperphysiker Sheng Meng vom Physikalischen Institut in Peking ergänzt: „Mit einem solchen Mikroskop, das in der Lage ist, die Dichte der Valenzelektronen zu sondieren, können wir vielleicht schon bald die Grenzen unserer rechnergestützten Werkzeuge der Festkörperphysik überwinden. Wir können moderne, dem Stand der Technik entsprechende Modelle optimieren, um die Eigenschaften von Materialien immer genauer vorherzusagen.“ Jetzt arbeiten die Forscher daran, die Technik weiterzuentwickeln. Sie planen, Elektronen in drei Dimensionen zu sondieren und die Methode an einer breiten Palette von Materialien zu erproben. Goulielmakis ist optimistisch, bald vielleicht nicht nur Bilder, sondern ganze Videos von den Vorgängen im Innern der Materie gewinnen zu können: „Da die Laser-Pikoskopie leicht mit zeitaufgelösten Lasertechniken kombiniert werden kann, könnte es bald möglich sein, echte Filme von Elektronen in Materialien aufzunehmen. Dies ist ein lang ersehntes Ziel in den ultraschnellen Wissenschaften und bei der Mikroskopie von Materie.“
U. Rostock / JOL