Pixelierte Leuchtstoffe
Neue Methode für eine höhere räumliche Auflösung von Leuchtdioden.
Leuchtdioden gewinnen für Beleuchtungssysteme mit hoher Lichtausbeute und hoher räumlicher Auflösung zunehmend an Bedeutung. Sie kommen in Projektionssystemen oder Fernsehgeräten zum Einsatz, ebenso wie im Auto: Dort erhöhen hochauflösende, adaptive Frontbeleuchtungssysteme im Vergleich zu herkömmlichen Scheinwerfern die Lichtqualität und Sicherheit durch einstellbares, blendfreies Licht. LED-Matrixsysteme und Flüssigkristallanzeigen sind Stand der Technik. Die Weißlichterzeugung basiert dabei auf einem blau-emittierenden LED-Chip oder Laser in Kombination mit einem gelb-emittierenden, pixelierten Leuchtstoff. Die Pixelierung der Leuchtstoffe wird entweder durch Laserstrukturierung oder Ätzen erreicht. Die Auflösung dieser Systeme hängt davon ab, wie gut die einzelnen Leuchtstoffpixel optisch voneinander entkoppelt sind.
Abb.: Laserscanning-Mikroskopie-Aufnahme eines einzelnen Pixels. Die Höhe wird durch die Farbskala kodiert. (Bild: Fh.-AWZ)
Eine vielversprechende Alternative bieten mit Leuchtstoffen gefüllte Siliziumstrukturen, insbesondere bei Anwendungen, die ein sehr hohes Auflösungsvermögen benötigen. „Dabei werden die gewünschten Strukturen in einen Siliziumwafer geätzt und anschließend mit Leuchtstoffpulver gefüllt. Solche pixelierten Leuchtstoffe ermöglichen eine deutlich höhere räumliche Auflösung, da sehr kleine Pixelstrukturen mit Abmessungen von wenigen Mikrometern erzeugt werden können“, erklärt Franziska Steudel, Teamleiterin „Leuchtstoffdesign“ am Fraunhofer-Anwendungszentrum AWZ für Anorganische Leuchtstoffe in Soest. Unter Anregung des Leuchtstoffs mit blauer Laserstrahlung überzeugen die Strukturen mit einer hervorragenden Kontrastauflösung sowie einer lambertschen Lichtstärkeverteilung.
„Aufgrund ihrer hohen thermischen Leitfähigkeit verbessern die Siliziumstrukturen nicht nur das optische Auflösungsvermögen, sondern tragen zudem deutlich zum Wärmemanagement bei“, sagt Peter Nolte, Leiter des Teams „Zuverlässigkeit von Leuchtstoffen“ am gleichen Fraunhofer-Anwendungszentrum. Je kleiner die Pixel, desto geringer ist die Erwärmung des Leuchtstoffs, da die umgebenden Siliziumwände die Wärme effizient abführen. Die Porosität der Leuchtstoffschicht erlaubt bei Anwendungen mit sehr hoher Leistungsdichte sogar eine aktive Kühlung des Leuchtstoffs mit Luft oder Wasser.
Fh.-IMWS / JOL