13.02.2025

Polymerkristall leitet Strom wie ein Metall

Zweidimensionales Polyanilin-Polymer als Basis für leistungsfähigere organische Elektronik.

Ein internationales Forschungsteam hat unter Mitwirkung von Wissenschaftlerinnen und Wissenschaftlern der Technischen Universität Dresden ein zweidimensionales leitendes Polymer entwickelt. Eine spezielle, geordnete Form von Polyanilin (2DPANI) weist eine außergewöhnliche elektrische Leitfähigkeit und ein metallisches Ladungstransportverhalten auf. Die Entdeckung ist ein grundlegender Durchbruch in der Polymerforschung, denn sie eröffnet neue Möglichkeiten für die Entwicklung leistungsfähigerer organischer Elektronik.

Abb.: Illustration des Verfahrens zur Synthese des Polymers auf der...
Abb.: Illustration des Verfahrens zur Synthese des Polymers auf der Wasseroberfläche.
Quelle: P. Zhang

Weitere Nachrichten zum Thema

Photo
Photo
Photo

Leitende Polymere wie Polyanilin, Polythiophen und Polypyrrol sind für ihre hervorragende elektrische Leitfähigkeit bekannt und haben sich als vielversprechende kostengünstige, leichte und flexible Alternativen zu herkömmlichen Halbleitern und Metallen erwiesen. Trotz bedeutender Fortschritte leiten diese Materialien Elektronen hauptsächlich entlang ihrer Polymerketten. Die Leitfähigkeit zwischen den Polymersträngen oder -schichten bleibt jedoch begrenzt, da die Moleküle nicht gut miteinander verbunden und die elektronischen Wechselwirkungen schwach sind.

Um dieses Problem zu lösen, hat das Forschungsteam einen mehrschichtigen zweidimensionalen Polyanilin-Kristall (2DPANI) synthetisiert und charakterisiert. „Dieses Material weist eine außergewöhnliche Leitfähigkeit auf – nicht nur innerhalb seiner Ebenen, sondern auch senkrecht über die Schichten hinweg. Das nennen wir einen metallischen out-of-plane Ladungstransport oder auch 3D Leitung. Das ist ein grundlegender Durchbruch in der Polymerforschung“, sagt Thomas Heine von der TU Dresden. Gemeinsam mit seinem Team und dem Center for Advanced Systems Understanding CASUS in Görlitz hat er die Struktur des Polymers zunächst simuliert und den metallischen Charakter berechnet.

Xinliang Feng und sein Team am Center for Advancing Electronics Dresden (cfaed) und am Max-Planck-Institut für Mikrostrukturphysik in Halle synthetisierten das neue Polymer und führten Gleichstromtransportstudien durch. Diese Messungen zeigen eine anisotrope Leitfähigkeit mit 16 Siemens pro Zentimeter in der Ebene und sieben Siemens pro Zentimeter außerhalb der Ebene – etwa drei Größenordnungen höher als bei herkömmlichen linear leitenden Polymeren. Darüber hinaus zeigen Messungen bei niedrigen Temperaturen, dass die Leitfähigkeit außerhalb der Ebene mit abnehmender Temperatur zunimmt – ein charakteristisches Verhalten von Metallen.

Weitere Messungen wurden am CIC nanoGUNE in San Sebastián, Spanien mittels Infrarot- und Terahertz-Nahfeldmikroskopie durchgeführt. Diese ergaben eine Gleichstromleitfähigkeit von etwa 200 Siemens pro Zentimeter. Dieser Durchbruch eröffnet die Möglichkeit, dreidimensionale metallische Leitfähigkeit in metallfreien organischen und polymeren Materialien zu erreichen. Damit bieten sich aufregende neue Perspektiven für Anwendungen in der Elektronik, der elektromagnetischen Abschirmung oder der Sensorik. Das metallische Polymer könnte als funktionelle Elektrode in der Elektro- und Photoelektrochemie dienen, zum Beispiel zur Produktion von Wasserstoff.

TU Dresden / JOL

Jobbörse

Physik Jobbörse in Regensburg
Eine Kooperation von Wiley und der DPG

Physik Jobbörse in Regensburg

Regensburg, 18.-20.03.2025
Die Präsentationen dauern jeweils eine Stunde, am Ende der Veranstaltung ist Zeit für Q&A eingeplant.

Veranstaltung

Spektral vernetzt zur Quantum Photonics in Erfurt

Spektral vernetzt zur Quantum Photonics in Erfurt

Die neue Kongressmesse für Quanten- und Photonik-Technologien bringt vom 13. bis 14. Mai 2025 internationale Spitzenforschung, Industrieakteure und Entscheidungsträger in der Messe Erfurt zusammen

Meist gelesen

Themen