04.05.2023

Quantencomputer kann rückwärts rechnen

Bauplan für eine neue Art von Quantencomputer zum Lösen des Faktorisierungs-Problems.

Die Basis heutiger Computer sind Mikroprozessoren, die Gatter ausführen. Diese Gatter und damit Computer als Ganzes sind irreversibel. Das heißt, Algorithmen können nicht einfach rückwärts ablaufen. Gelänge dies, könnte man große Zahlen faktorisieren, was ein wichtiger Pfeiler der Kryptographie ist. Genau diese Umkehrung von Algorithmen haben Martin Lanthaler, Ben Niehoff und Wolfgang Lechner von der Uni Innsbruck mit Hilfe von Quantencomputern jetzt entwickelt.

Abb.: Martin Lanthaler (links) und Wolfgang Lechner (rechts) vom Institut für...
Abb.: Martin Lanthaler (links) und Wolfgang Lechner (rechts) vom Institut für theo­re­tische Physik der Uni­ver­sität Inns­bruck. Zu­sam­men mit Ben Niehoff haben sie einen Bau­plan für eine neue Art von Quanten­computer zum Lösen des Fakto­ri­sie­rungs-Pro­blems ent­wickelt. (Bild: U. Innsbruck)

Startpunkt ist ein klassischer logischer Schaltkreis, welcher zwei Zahlen miteinander multipliziert. Werden als Ausgangswert zwei ganze Zahlen eingegeben, liefert der Schaltkreis deren Produkt. Ein solcher Schaltkreis ist aus irreversiblen Operationen aufgebaut. „Jedoch kann die Logik des Schaltkreises innerhalb von Grundzuständen eines Quantensystems kodiert werden“, erklärt Lanthaler. „Damit kann sowohl Multiplikation als auch Faktorisierung als Grundzustandsproblem verstanden und mit Methoden der Quantenoptimierung gelöst werden.“

„Kern unserer Arbeit ist die Codierung der Grundbausteine des Multiplizier-Schaltkreises, konkret von UND-Gatter, Halb- und Volladdierer mit der Parity-Architektur als Grundzustandsproblem auf einem Ensemble von wechselwirkenden Spins”, so Lanthaler weiter. Die Codierung erlaubt es, den ganzen Schaltkreis aus sich wiederholenden Subsystemen aufzubauen, die auf einem zweidimensionalen Raster angeordnet werden können. Indem mehrere dieser Subsysteme aneinandergereiht werden, können größere Problem-Instanzen realisiert werden.

Anstelle der klassischen Brute-Force-Methode, wo alle möglichen Faktoren ausprobiert werden, können Quanten­verfahren den Such­prozess beschleunigen. Um den Grund­zustand zu finden, und damit ein Optimierungs­problem zu lösen, muss nicht die ganze Energie­land­schaft abgesucht werden, sondern tiefer­liegende Täler können durch Tunneln erreicht werden.

Die aktuelle Forschungsarbeit liefert einen Bauplan für eine neue Art von Quantencomputer zum Lösen des Faktorisierungs-Problems, das ein Eckpfeiler der modernen Kryptographie ist. Dieser Bauplan basiert auf der an der Uni Innsbruck entwickelten Parity-Architektur und kann auf allen gängigen Quantencomputer-Plattformen umgesetzt werden.

U. Innsbruck / RK

Weitere Infos

 

Anbieter des Monats

Quantum Design GmbH

Quantum Design GmbH

Forschung lebt von Präzision. Seit über 40 Jahren steht Quantum Design für innovative Messtechnik auf höchstem Niveau – entwickelt in Kalifornien, betreut weltweit. Unsere Systeme sind der Goldstandard in der Materialcharakterisierung und ermöglichen tiefe Einblicke in die magnetischen, thermischen und optischen Eigenschaften von neuen Materialien.

Content Ad

Double-Pass AOM Clusters

Double-Pass AOM Clusters

Versatile opto-mechanical units that enable dynamic frequency control and amplitude modulation of laser light with high bandwidth, that can be combined with beam splitters, monitor diodes, shutters and other multicube™ components.

Meist gelesen

Themen