Rätselhafte Perowskite
Ursachen für lange Lebensdauer der Ladungsträger in Solarzellen im Detail überprüft.
Seit einigen Jahren boomt die Forschung an anorganischen und hybridorganischen Bleihalogenid-Perowskiten. Einige Perowskit-Halbleiter wandeln das energiereiche blaue Spektrum des Sonnenlichts in elektrische Energie um, so dass Solarzellen auf Perowskitbasis im Tandem mit Silizium-Unterzellen inzwischen Wirkungsgrade von dreißig Prozent erreichen. Perowskit-Halbleiter eignen sich auch für Leuchtdioden, als Halbleiterlaser und Strahlungsdetektoren. Anders als konventionelle Halbleiter lassen sich diese Materialien preisgünstig und mit wenig Energieaufwand aus Lösungen als Dünnfilme herstellen. Doch auch nach Jahren intensiver Forschung sind die mikroskopischen Prozesse in Perowskit-Halbleitern, die den guten Ladungstransport sicherstellen, nicht im Detail verstanden. Klar ist nur: Die Ladungsträger, die durch Sonnenlicht im Material freigesetzt werden, haben offenbar hohe Lebensdauern und gehen weniger häufig verloren, etwa an Defekten oder durch Rekombination.
Um dieses Verhalten zu erklären, kursieren verschiedene Hypothesen, die nun ein Team an Bessy II experimentell überprüft hat. Beraten wurde das Team um Oliver Rader von der Perowskit-Expertin Eva Unger am Helmholtz Zentrum Berlin HZB. Eine Hypothese geht davon aus, dass sich in Bleihalogenid-Perowskiten Polaronen bilden, die zum Ladungstransport beitragen. Solche Polaronen sind Schwingungen von Ionen im Kristallgitter, die wegen ihrer Ladung auf die Bewegung von Elektronen reagieren. Da Perowskite aus negativen (hier Blei) und positiven Ionen (hier Cäsium) bestehen, lag die Vermutung nahe, dass Polaronen eine Rolle spielen. Auch Messungen einer anderen Gruppe schienen diese These zu unterstützen.
An Bessy II lässt sich diese Hypothese jedoch experimentell genau überprüfen. Mit winkelaufgelöster Photoemissions-Spektroskopie (ARPES) ist es möglich, die elektronischen Bandstrukturen abzutasten. Ein gewichtiger Anteil von Polaronen am Ladungstransport würde sich durch eine höhere Effektive Masse bemerkbar machen. ARPES misst die kinetische Energie der Elektronen und je zäher der Elektronentransport, desto höher die effektive Masse. Je größer diese Masse, desto geringer zeigte sich die Krümmung der gemessenen Parabel. Die Messungen, die Maryam Sajedi an kristallinen Proben aus CsPbBr3 durchführte, zeigten jedoch keine geringeren Krümmungen und widerlegten damit die These von großen Polaronen. „Die effektive Masse, die wir aus den Messdaten ermittelt haben, ist nicht größer als theoretisch vorhergesagt“, sagt Maryam Sajedi. Und Oliver Rader erläutert: „Um sicher zu gehen, dass wir alle möglichen Effekte außer Polaronen berücksichtigen, zum Beispiel die Abstoßung der Elektronen untereinander, haben wir mit Theoretikern vom Forschungszentrum Jülich zusammengearbeitet. Es ergibt sich aber keine erhöhte Masse im Experiment, für die man Polaronen postulieren müsste.“
Die zweite Hypothese geht von einem gigantischen Rashba-Effekt aus, der die Verluste durch Rekombination von Ladungsträgern begrenzen soll. Der Rashba-Effekt beruht auf einer starken Spin-Bahn-Kopplung, die bei Blei-Halogenid-Perowskiten durch das Schwermetall Blei erzeugt werden könnte. Auch hier deuteten frühere Arbeiten auf diesen Effekt als mögliche Erklärung für die langen Lebensdauern der Ladungsträger hin. Maryam Sajedi untersuchte sowohl Proben aus anorganischem CsPbBr3 und aus hybrid-organischem MAPbBr3 mit Spin-ARPES und analysierte die Messdaten „Dieser Effekt ist mindestens hundertmal kleiner als angenommen“, kommentiert sie das Ergebnis. ;„Wir haben experimentell zwei verbreitete Hypothesen zu den Transporteigenschaften in Perowskiten widerlegen können, das ist ein wichtiges Ergebnis“, sagt Rader. Es ist hilfreich, bestimmte Hypothesen zu eliminieren, damit man bei der Optimierung dieser Materialien an den richtigen Hebeln ansetzen kann.
HZB / JOL