Rapide rosa röntgen
Neuartiger Aufbau ermöglicht breitbandige serielle Synchrotron-Röntgenkristallographie.
Ein neu entwickelter Versuchsaufbau ermöglicht die Röntgenstrukturanalyse von Biomolekülen wie beispielsweise Proteinen mit viel weniger Probenmaterial und kürzeren Belichtungszeiten als zuvor. Mit breitbandiger Röntgenstrahlung lassen sich Proteinkristalle an Synchrotron-
Abb.: Der neu entwickelte Aufbau reduziert die störende Streustrahlung deutlich, indem der Pink-
Die Röntgenkristallographie ist das Arbeitspferd der Proteinstrukturanalyse: Für diese Technik werden Kristalle des zu untersuchenden Protein gezüchtet und dann mit Röntgenstrahlung – zum Beispiel aus einem Synchrotron – untersucht. Das Röntgenlicht wird von den Proteinkristallen auf charakteristische Weise abgelenkt, und aus dem resultierenden Beugungsmuster lässt sich die innere Struktur des Kristalls und damit des Proteins atomgenau berechnen.
Im Unterschied zur konventionellen Röntgenkristallographie, bei der meist ein einzelner oder relativ wenige große Proteinkristalle untersucht werden, durchleuchtet die serielle Kristallographie hundert bis hunderttausende sehr kleine Proteinkristalle. Die gewonnenen Informationen werden anschließend zu einem Datensatz zusammengesetzt, aus dem sich die Kristallstruktur bestimmen lässt. An Röntgenlasern (XFELs) wird die Methode schon vielfach angewendet. Durch deren sehr kurze Röntgenblitze ist es dort zudem möglich, chemische und Enzym-
„Serielle Kristallographie lässt sich auch gut an Synchrotronstrahlungsquellen anwenden. Allerdings dauern die Messungen hier durch die Verwendung von monochromatischem Röntgenlicht mit einer bestimmten Farbe und der daraus resultierenden geringeren Intensität der Röntgenstrahlung länger,“ erklärt Henry Chapman, leitender Wissenschaftler bei DESY. Die Forscher verwenden also am Synchrotron üblicherweise nur einen kleinen Teil des erzeugten Lichts für die Untersuchung „Zudem werden für einen vollständigen Datensatz deutlich mehr Kristalle – oft mehrere zehntausend – benötigt. Da die Belichtungszeiten am Synchrotron relativ lang sind, konnten viele Reaktionen, die schnell ablaufen, bisher nur an Röntgenlasern zeitaufgelöst untersucht werden“, sagt Chapman.
Durch Verwendung des Pink Beam lässt sich die serielle Kristallographie auch am Synchrotron mit sehr kurzen Belichtungszeiten umsetzen. Denn statt eines schmalen Wellenlängenbereichs wird hierbei polychromatische, also „mehrfarbige“ Röntgenstrahlung verwendet. Dieser Pink Beam enthält ein relativ breites Spektrum und ist dadurch viel intensiver. Mit dem Pink Beam lassen sich daher auch sehr schnelle Reaktionen an Synchrotronquellen untersuchen. Zudem lassen sich die Experimente wesentlich schneller durchführen, da durch die Verwendung des breiten Spektrums viel weniger Kristalle für eine Strukturbestimmung benötigt werden als bei der Verwendung vom monochromatischer Röntgenstrahlung mit nur einer „Farbe“.
Bisher ließ sich jedoch noch keine serielle Kristallographie mit dem Pink Beam durchführen, da bei diesen Untersuchungen die auftretende unerwünschte Streustrahlung die Messergebnisse erheblich beeinträchtigt hat. „Die Streustrahlung entsteht dadurch, dass das Röntgenlicht zur Untersuchung der Probe nicht nur von den Molekülen im Kristall, sondern auch am Probenhalter oder der Luft, die die Probe umgibt, gestreut wird“, erklärt Max Wiedorn, DESY-
Die Forscher haben daher einen neuen Messaufbau entwickelt, mit dem die störende Streustrahlung weitestgehend unterdrückt wird. Dazu verwenden sie einerseits einen Probenhalter aus Silizium, der das Röntgenlicht nicht störend streut, und sorgen andererseits dafür, dass sich extrem wenig Luft im Weg des Röntgenstrahls befindet. Unmittelbar vor und hinter der Probe wird der Röntgenstrahl dazu von einem dünnen Metallröhrchen umschlossen, das verhindert, dass die auftretende Streustrahlung auf die Röntgenkamera trifft. Zudem wird die Luft direkt an der Probe weitestgehend durch einen Strom von Heliumgas verdrängt, welches viel weniger Streustrahlung erzeugt als Luft. Durch die Unterdrückung der Streustrahlung ist es den Forschern nun erstmals gelungen, die dreidimensionale Struktur von zwei Proteinen mit serieller Kristallographie im Pink Beam sehr genau zu bestimmen. Die entsprechenden Messungen wurden an der BioCARS-
„Ein großer Vorteil der Methode liegt darin, dass mit ihr sehr genaue Strukturuntersuchungen von Proteinen durchgeführt werden können, aber nur ein Bruchteil des Probenmaterials benötigt wird“, betont DESY-
Zudem lassen sich die Messungen bei Raumtemperatur durchführen, wodurch sich strukturelle Änderungen, wie sie zum Beispiel bei der Bindung eines Wirkstoffs an ein Zielprotein auftreten, in Zukunft auch zeitabhängig untersuchen lassen. Dabei erreicht die neue Methode eine sehr hohe zeitliche Auflösung von 100 Pikosekunden, was mit der bisher eingesetzten monochromatischen Röntgenstrahlung am Synchrotron nicht möglich war.
DESY / DE