Raumfahrt: Treibstrahl-Kontamination erschwert Suche nach Leben
Untersuchungen in DLR-Simulationsanlage helfen, Verunreinigungen durch Antriebe von Raumsonden besser einzuschätzen.
Gibt es Leben in unserem Sonnensystem? Eine positive Antwort auf diese Frage könnte der Jupiter-Mond Europa geben, denn er soll unter seiner Eisoberfläche einen Wasserozean beherbergen. Doch wie könnte bei einer Raumfahrtmission dorthin verhindert werden, dass das Raumschiff die Landestelle kontaminiert? Dafür hat das Deutsche Zentrum für Luft- und Raumfahrt in Göttingen in einer einzigartigen Anlage Untersuchungen durchgeführt. Die Experimente fanden im Auftrag des Jet Propulsion Laboratory der NASA statt.
Ein Problem bei allen Missionen, die nach Spuren von Leben suchen, ist die mögliche Verunreinigung durch die Abgase der Landetriebwerke, die Treibstrahl-Kontamination. „Treibstrahl-Kontamination kann bei allen Raumfahrzeugen auftreten“, erklärt Martin Grabe vom DLR-Institut für Aerodynamik und Strömungstechnik. Sobald ein Triebwerk feuert, produziert es einen Abgasstrahl, der negative Einflüsse auf Sensoren wie Kameras oder Instrumente haben kann. Bei der Landung einer Raumsonde treffen diese Abgase auf die Oberfläche. „Wenn dann nach organischen Bestandteilen als Zeichen für Leben gesucht werden soll, könnten diese schlimmstenfalls von den eigenen Treibstrahlen stammen“, so Grabe. Treibstrahlen aus Raumfahrtantrieben auf Hydrazinbasis enthalten Bestandteile wie Ammoniak oder Kohlenstoffverbindungen – Stoffe, die als Anzeichen für Leben gelten.
Die Forscher des DLR sind Spezialisten auf dem Gebiet der Treibstrahl-Kontamination. Dafür verfügen sie über mehrere einzigartige Versuchsanlagen, darunter die Simulationsanlage für Treibstrahlen Göttingen. „Das ist die einzige Anlage der Welt, die eine so große Pumpleistung hat, dass sich die Treibstrahlen von untersuchten Triebwerken ausbreiten wie im All“, sagt Grabe. Herkömmliche Versuchsanlagen haben mit dem Problem zu kämpfen, dass die Abgase des Triebwerks an der Wand abprallen und dann den untersuchten Strahl verfälschen.
Der Clou bei der Göttinger Anlage: Die Wände werden mit siedendem Helium auf minus 269 Grad Celsius gekühlt. Sobald ein Treibstrahl auf die Wand trifft, gefriert er. Die Folge: Der Strahl verhält sich wie im All, wo er nicht von Wänden umgeben ist. Um diese idealen Bedingungen herzustellen, muss die Versuchsanlage drei Tage lang heruntergekühlt werden. Das anschließende Wiederaufwärmen dauert sogar fünf Tage.
Die Forscher untersuchten zwei verschiedene Triebwerke und deren Auswirkungen auf mehr als 120 unterschiedliche Material-Proben. Die meisten Proben stammten vom JPL, das auch die chemische Analyse der Proben durchführte. Die Triebwerke stellte das Goddard Space Flight Center der NASA. Mit zwei Messtechniken untersuchte das DLR-Team die Treibstrahlen im Vakuum: mit einem Massenspektrometer, das die chemische Zusammensetzung der Verunreinigungen misst, und mit Quarzkristall-Sensoren, die Schichten in Stärke weniger Atome erfassen können.
Die Auswertung zeigt, dass unterschiedliche Triebwerke ähnlichen Typs sehr unterschiedliche Kontaminationen verursachen. Wichtig war dabei die Erkenntnis, dass es eine Rolle spielt, ob ein Triebwerk bereits vor der Landung – zum Beispiel bei einem Flugmanöver – gezündet worden ist. In den Abgasstrahlen wurden Reste von Hydrazin gefunden, das sich offensichtlich entgegen den Erwartungen nicht vollständig zersetzt. Außerdem stellten die Wissenschaftler fest, dass hydrazinhaltige Strahlbestandteile auf Kupferoberflächen, die in aktuellen Raumfahrtmissionen wie Europa Clipper eine wichtige Rolle spielen, eine starke Auswirkung zeigen.
Die Erkenntnisse dieser Untersuchungen sollen dabei helfen, Verunreinigungen durch Antriebe künftiger Raumfahrzeuge besser einzuschätzen. „Je mehr wir wissen, desto besser können Raumfahrzeuge und Missionen die unvermeidbare Treibstrahlkontamination schon in der Planungsphase berücksichtigen“, betont Grabe. Bereits jetzt haben sich Szenarien für neue Untersuchungen aufgetan. Die europäische Weltraumorganisation ESA hat aufgrund dieser Forschungen zwei entsprechende Aufträge an die DLR vergeben.
DLR / RK
Weitere Infos