12.05.2023 • Biophysik

Rekonstruktion der Sauerstoffbildung auf der Erde

Erkenntnisse können auch für die Produktion von grünem Wasserstoff bedeutsam sein.

Der molekulare Sauerstoff der Erdatmo­sphäre wird durch die licht­ge­triebene Spaltung von Wasser in Pflanzen, Algen und Cyano­bakterien gebildet. Diesen Prozess konnten Forscher jetzt in aufwändigen Experimenten mit Infra­rot­licht nach­verfolgt und mittels quanten­chemischer Simulationen nach­zu­verfolgen. Die Studie des Teams um Physiker der FU Berlin und der Universität L’Aquila in Italien liefert Einblicke in den biologischen Prozess, der wahr­scheinlich in den letzten drei Milliarden Jahren auf der Erde unverändert abgelaufen ist. Die Wissenschaftler betonen auch den Zusammenhang zur Produktion von grünem Wasserstoff oder anderen erneuer­baren Brennstoffen, die dem biologischen Vorbild folgt. „In technischen Systemen zur Produktion erneuerbarer Brennstoffe sind sowohl die Verwendung seltener Edel­metalle als auch hohe Energie­verluste ein Problem. Nun können gezielt edel­metall­freie Materialien entwickelt werden, bei denen die gekoppelte Bewegung der Elektronen und Protonen minimale Energie­verluste ermöglicht", sagt Holger Dau von der FU Berlin.

Abb.: Reaktions­zyklus der photo­syn­the­tischen Sauer­stoff­bildung....
Abb.: Reaktions­zyklus der photo­syn­the­tischen Sauer­stoff­bildung. (Bild: P. Greife, H. Dau, FU Berlin)

Die Photosynthese liefert die Energie für das Leben auf der Erde, indem sie Sonnenenergie in chemischer Form speichert. In der Photosynthese sowie auch in technischen Systemen für eine nachhaltige Treib- und Brennstoff­produktion ist die Wasser­spaltung eine zentrale Reaktion, mittels der mobile Elektronen und Protonen aus dem Rohstoff Wasser gewonnen werden können und molekularer Sauerstoff freigesetzt wird. Die heutige sauerstoff­reiche Atmosphäre der Erde resultiert aus der photo­synthe­tischen O2-Produktion während der Wasser­spaltung am protein­gebundenen Mangan-Cluster des Photosystems II der Pflanzen, Algen und Cyano­bakterien.

Die Bildung des O2-Moleküls beginnt in einem Zustand mit vier angesammelten Elektronen­löchern, dem S4-Zustand, der vor mehr als einem halben Jahrhundert postuliert wurde und seitdem rätselhaft geblieben ist. Die Forscher konnten jetzt diese fehlende Schlüssel­element in der photo­synthe­tischen O2-Bildung identi­fizieren. Nach mehr­jähriger Vorbereitung gelang ein aufwändiges Experiment, mit dem die Bewegungen der Elektronen und Protonen verfolgt werden konnten. Hierzu wurden Partikel des Photosystem II-Chlorophyll-Protein-Komplexes aus vierzig Kilogramm Spinat isoliert. Dann wurden über sieben Monate etwa drei Millionen Laserblitze gefeuert und für jeden von diesen der Zeitverlauf eines Infrarot­signals mit Mikro­sekunden­zeit­auf­lösung aufge­zeichnet.

Mehrere Terabyte an Messdaten wurden anschließend analysiert und ergaben in Kombination mit Molekül­mechanik-Berechnungen für fast 600.000 Atome und quanten­chemischen Simula­tionen das folgende Bild: Zunächst wird im Protein eine entscheidende Protonen­leer­stelle durch elektro­statisch fern­ge­steuerte Seiten­ketten­de­proto­nierung erzeugt. Anschließend wird in einem erstaun­lichen Einzel­elektronen-Multi­protonen-Trans­fer­ereignis ein reaktives Sauerstoff­radikal gebildet. Das ist der langsamste Schritt in der photo­synthe­tischen O2-Bildung mit nur moderater Energie­barriere und über­raschender entropischer Verlangsamung. Die Forscher identi­fizieren somit den zuvor rätsel­haften S4-Zustand als ein Sauerstoff­radikal­zustand. Auf seine Bildung folgen eine schnelle O-O-Bindung und O2-Freisetzung.

In Verbindung mit früheren Durch­brüchen bei experi­men­tellen und rechnerischen Unter­suchungen ergibt sich nun ein über­zeugendes atomis­tisches Bild der photo­synthe­tischen O2-Bildung, wie die Wissen­schaftler betonen. Die Studie liefert somit einen Einblick in einen biolo­gischen Prozess, der wahr­schein­lich seit drei Milliarden Jahren auf die gleiche einzig­artige Weise von statten gegangen ist, wodurch auch das wissens­basierte Design künstlicher Wasser­spaltungs­systeme unter­stützen wird.

FU Berlin / RK

Weitere Infos

 

Veranstaltung

Spektral vernetzt zur Quantum Photonics in Erfurt

Spektral vernetzt zur Quantum Photonics in Erfurt

Die neue Kongressmesse für Quanten- und Photonik-Technologien bringt vom 13. bis 14. Mai 2025 internationale Spitzenforschung, Industrieakteure und Entscheidungsträger in der Messe Erfurt zusammen

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen