20.07.2005

Rekord mit HTSL

Ein mit flüssigem Stickstoff gekühlter Hochtemperatursupraleiter (HTSL) trägt bis zu 70.000 Ampere - Weltrekord.




Ein mit flüssigem Stickstoff gekühlter Hochtemperatursupraleiter (HTSL) trägt bis zu 70.000 Ampere - Weltrekord.

Das Forschungszentrum Karlsruhe hat in Zusammenarbeit mit dem "Centre de Recherches en Physique des Plasmas" (CRPP) der Eidgenössischen Technischen Hochschule in Lausanne, Schweiz, eine mit flüssigem Stickstoff gekühlte Hochtemperatursupraleiter-Stromzuführung entwickelt, die einen elektrischen Strom von 70.000 Ampere tragen kann. Die neuartigen Stromzuführungen sollen nun auch im Fusions-Forschungsreaktor ITER, der im südfranzösischen Cadarache aufgebaut wird, Verwendung finden. Solche Stromzuführungen werden benötigt, um den Strom von Raumtemperatur auf die tiefe Temperatur der supraleitenden Spulen des ITER zu übertragen, die bei -269 Grad Celsius betrieben werden.

Die im Forschungszentrum Karlsruhe entwickelte Hochtemperatursupraleiter-Stromzuführung ist rund 2 Meter lang und soll im Fusions-Forschungsreaktor ITER eingesetzt werden. (Foto: Forschungszentrum Karlsruhe)

In einem Fusionskraftwerk wird Energie durch das Verschmelzen von Wasserstoffatomen zu Helium erzeugt. Dieser physikalische Prozess läuft auf der Erde erst bei Temperaturen um 100 Millionen Grad Celsius ab. Die Materie liegt bei diesen Temperaturen als Plasma vor, das heißt, dass der positiv geladene Atomkern von den negativ geladenen Elektronen getrennt ist. Geladene Teilchen lassen sich - ohne Berührung zu irgendwelchen Wänden - in einem Magnetfeld einsperren. Um dieses Magnetfeld zu erzeugen, werden große elektrische Spulen benötigt, die aber nur im supraleitenden Zustand, also bei sehr tiefen Temperaturen (gekühlt durch flüssiges Helium bei Temperaturen um -269 Grad Celsius), wirtschaftlich arbeiten können. Die in diesen elektrischen Spulen notwendigen hohen elektrischen Ströme müssen allerdings von außen in die Spulen geführt werden. Mit normalleitenden Stromzuführungen treten einerseits elektrische Verluste auf, andererseits stellen die Zuführungen eine Wärmebrücke dar, über die Wärme auf die kalten supraleitenden Spulen übertragen wird. Die Entwicklung von Stromzuführungen aus Hochtemperatursupraleitern reduziert diese Probleme deutlich.

Mit der Entdeckung der Hochtemperatursupraleiter (HTSL) im Jahre 1986 waren große Erwartungen geweckt worden, da diese Materialien bei vergleichsweise hohen Temperaturen Strom ohne Verluste transportieren können. Insbesondere die damit mögliche Kühlung mittels flüssigem Stickstoff bei etwa 80 Kelvin (-193 Grad Celsius) war viel versprechend, konnte aber aufgrund der schwierigen Herstellung geeigneter Leiter nicht umgesetzt werden. Mittlerweile sind industriell hergestellte Hochtemperatursupraleiter verfügbar, die aber bislang eher bei kleinen Strömen eingesetzt wurden.

Im Rahmen der Arbeiten zum Fusions-Forschungsreaktor ITER, der in Südfrankreich gebaut werden soll, hat das Forschungszentrum Karlsruhe in Zusammenarbeit mit dem Centre de Recherches en Physique des Plasmas (CRPP) der Eidgenössischen Technischen Hochschule in Lausanne, Schweiz, nunmehr eine mit flüssigem Stickstoff gekühlte Stromzuführung auf Basis eines Hochtemperatursupraleiters entwickelt, die einen elektrischen Strom von 70000 Ampere tragen kann. Die Stromzuführungen übertragen den Strom von Raumtemperatur auf die tiefe Temperatur der supraleitenden Spulen des ITER, die bei 4.5 Kelvin (-269 Grad Celsius) betrieben werden.

"Die neu entwickelte Stromzuführung verursacht im Gegensatz zu einer Stromzuführung konventioneller Bauart im Bereich von -269 Grad Celsius bis -193 Grad Celsius keine Verluste und ermöglicht somit eine große Energieersparnis", erklärt Reinhard Heller, der die Stromzuführung im Institut für Technische Physik des Forschungszentrums Karlsruhe entwickelt hat.

Außerdem hat die Stickstoffkühlung den Vorteil, dass sie unabhängig vom sonst verwendeten Heliumkühlkreislauf ist. Bei Versuchen in der TOSKA-Anlage des Forschungszentrums Karlsruhe konnte sogar demonstriert werden, dass trotz eines simulierten Kühlmittelausfalls der volle Strom von 70000 Ampere für mehr als 5 Minuten getragen werden kann. "Dies zeigt", so Reinhard Heller weiter, "dass eine solche HTSL-Stromzuführung neben dem Vorteil der Energieeinsparung auch hervorragende Sicherheitseigenschaften bietet."

Die erfolgreichen Ergebnisse dieses Entwicklungsprogramms haben jetzt zu dem Vorschlag geführt, die neuartigen Stromzuführungen bei ITER einzusetzen.

Quelle: FZK

Weitere Infos:

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen