Resonatoren im Doppelpack
Direkte mechanische Kopplung zweier benachbarter Sensoren im Nanobereich.
Im Arbeitsbereich der Physikerin Eva Weig ist es an der Universität Konstanz gelungen, Nanosäulen so nah aneinander zu bauen, dass sie durch die Verspannung im Boden gekoppelt werden können und miteinander schwingen. Aufgrund dieser Technik sind ganze Felder solcher Resonatoren denkbar, die wiederum als Sensoren oder Taktgeber eingesetzt werden und in der Quantentechnologie Anwendung finden könnten.
Die Kopplung von nanomechanischen Resonatoren ist derzeit ein stark beforschtes Gebiet, da diese in mancher Hinsicht im Kollektiv besser schwingen als allein. Im Gegensatz zu Konstruktionen, bei denen die Kopplung erst durch angelegte Felder aufgebaut werden muss, reicht es beim Resonatoren-Modell der Arbeitsgruppe für Nanomechanische Systeme, dass die Nanosäulen selbst gewisse Bedingungen erfüllen. Die wichtigste Bedingung ist, dass sie nahe genug nebeneinander auf dem Boden verankert sind. Wird eine Nanosäule in Schwingung versetzt, verspannt sich am Boden die Umgebung. Die Verspannung hat eine gewisse Reichweite, so dass die benachbarte Säule sie quasi spürt und sich mit bewegt. „Die Kopplung ist sogar ziemlich stark, wenn man die Säulen nah genug aneinanderstellt“, sagt Eva Weig.
„Unser System hat den Vorteil, dass damit leicht große Felder mit vielen Säulen gebaut werden können“, sagt Doktorandin Juliane Doster. Da die Schwingungsamplituden der Säulen so groß sind, dass sie sogar im Mikroskop sichtbar sind, wäre es möglich, direkt zu beobachten, was in solch einem Säulenfeld passiert. Die Arbeitsgruppe hat für ihre Nanosäulen den Halbleiter Galliumarsenid verwendet. Denkbar sind eigentlich alle Halbleiter. „Man muss nur wissen, wie man die Säulen aus dem Material herausätzen kann“, sagt Doster.
In die Resonatorenfelder könnten obendrein zusätzliche Funktionen eingebaut werden. „Auch wenn unsere Säulen bislang noch nicht funktionalisiert sind, eröffnen unsere Ergebnisse die Perspektive, zukünftig ganze Netzwerke von solchen funktionalisierten Nanosäulen zu realisieren“, so Eva Weig. Zum Beispiel könnten damit mehrere Einzelphotonenquellen miteinander synchronisiert werden, was Anwendungen in der Quantentechnologie eröffnet. Eine weitere mögliche Anwendung käme sogar ohne Funktionalisierung aus: Gekoppelte Säulenfelder könnten möglicherweise auch dazu genutzt werden, akustische Signale verlustfrei in einer Art „Einbahnstraße für Schallwellen“ zu leiten.
U. Konstanz / JOL
Weitere Infos
- Originalveröffentlichung
J. Doster et al.: Collective dynamics of strain-coupled nanomechanical pillar resonators, Nat. Comm. 10, 5246 (2019); DOI: 10.1038/s41467-019-13309-9 - Arbeitsgruppe für Nanomechanische Systeme (E. Weig), Universität Konstanz