Riesenatom mit Gedächtnis
Künstliches Quantensystem zeigt verblüffend neue Eigenschaften.
Die Forschergruppe aus deutschen, schwedischen und indischen Wissenschaftlern hat ein künstliches Quantensystem untersucht und dabei neue Eigenschaften gefunden. Die Experimente wurden an der Chalmers University of Technology in Schweden durchgeführt und die Theorie von Lingzhen Guo vom Max-Planck-Institut für die Physik des Lichts in Erlangen berechnet. Der gemessene Effekt konnte bisher nie an einem einzigen Quantensystem beobachtet werden.
Das Riesenatom, das an einer Antenne befestigt ist, ist aus supraleitfähigen Schleifen aufgebaut – den Qubits. Die Wissenschaftler konnten das Riesenatom aufgrund seiner Größe mit akustischen Wellen anregen. Dieses „Erdbeben auf Nanoebene“ verändert den Energiezustand des Systems. Beim Freisetzen der aufgenommenen Energie beobachtete das Team ein erstaunliches Phänomen.
Während ein normales Atom seine Energie schnell wieder abgibt, nachdem es angeregt wurde, reagiert das riesige künstliche Atom ganz anders: Es scheint über ein Gedächtnis zu verfügen. Lingzhen Guo aus der Abteilung von Florian Marquardt am Max-Planck-Institut für die Physik des Lichts fasst die Beobachtung zusammen: „Erst flacht das Energielevel ab, nur um kurze Zeit darauf wieder lebendig zu werden und einen weiteren Energieschub abzugeben. Das ist ein Zeichen dafür, dass das Riesenatom mit seiner Umwelt interagiert.“
Wenn es gelingt, mehrere Riesenatome miteinander zu verknüpfen, könnte man sie zum Bau eines Quantencomputers verwenden. Diese in der Theorie unvorstellbar leistungsfähigen Rechner haben das Potenzial, die Computertechnologie zu revolutionieren. Es wird vermutet, dass die intrinsische zeitverzögerte Rückkopplung von Riesenatomen genutzt werden könnte um Clusterzustände für universelle messtechnische Quantenberechnung zu erzeugen, für die wesentlich weniger Hardware-Ressourcen benötigt werden als für Gate-basierte Ansätze.
MPI-PL / JOL
Weitere Infos
- Originalveröffentlichung
G. Andersson et al.: Non-exponential decay of a giant artificial atom, Nat. Phys. 15, 1123 (2019); DOI: 10.1038/s41567-019-0605-6 - Dept. of Microtechnology and Nanoscience MC2, Chalmers University of Technology, Göteborg
- Abt. Theorie, Max-Planck-Institut für die Physik des Lichts, Erlangen