02.12.2005

Schillernde Farben

Potsdamer Forscher erweitern den Baukasten an Kolloid-Partikeln und ermöglichen neue Farbstoffe.




Potsdamer Forscher erweitern den Baukasten an Kolloid-Partikeln und ermöglichen neue Farbstoffe.

Potsdam - Wissenschaftlern am Max-Planck-Institut für Kolloid- und Grenzflächenforschung ist es mit Ionenbeschuss und Goldbedampfen gelungen, eine neue Familie von Partikeln herzustellen, deren Bindungsverhalten sich chemisch maßschneidern lässt. Mit diesen Partikeln hofft man nicht nur, die Dynamik von Festkörpern und Molekülen besser erforschen zu können - die Entdeckung könnte auch zum Beispiel neue Lacke hervorbringen, die ihre Farbe mit der Temperatur verändern (Angewandte Chemie, 2. Dezember 2005.

Abb. 1: Gezielt beschichtete Mikropartikel: Elektronenmikroskopieaufnahme der zweiten Lage eines Kolloid-Kristalls ohne Ionenätzung (links). Die mit Gold bedampften Flächen sind hell. Mitte: Aufsicht auf die dritte Lage eines Kolloid-Kristalls nach Ätzung und Goldbeschichtung. Rechts: Abbildung der Rückseite der dritten Lage des Kolloid-Kristalls. Sie enthält Goldpunkte (hell) mit einstellbarer Größe zwischen 20 und 80 Nanometer im Kernschatten der Bedampfung. (Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung)

Dass die Fingernägel von Frauen oder teure Autos heute wie Opale in vielen Farben schillern können, liegt an den Fortschritten der "Kolloidchemie", der Chemie kleiner Partikel: Die bunten Farben in modernen Lacken werden dadurch hervorgerufen, dass das Licht an Schichten aus regelmäßig angeordneten kolloidalen Teilchen reflektiert wird. Dabei werden einzelne Farben ausgelöscht oder verstärkt; die Dicke der Schichten - die so genannte "Gitterkonstante" - ist entscheidend für die Farbe. Weil sich Kugelform und Oberfläche der Teilchen heute maßschneidern lassen, kann man optimierte Kristalle mit den gewünschten Gitterkonstanten im Bereich des sichtbaren Lichtes herstellen.

Doch Kolloide können noch viel mehr: Sie sind auch interessante Modellsysteme für die Festkörperphysik, denn das Bindungsverhalten der relativ großen Partikel lässt sich mit dem der viel kleineren Atome vergleichen. Weil sie langsamer reagieren als Atome, kann man an ihnen Prozesse aus der Festkörperphysik beobachten und durchspielen. Problem: Atome sind - anders als die meisten Partikel - in der Regel nicht kugelsymmetrisch, sondern besitzen verformte "Orbitale", die wie Hanteln oder Ovale in den Raum ragen.

Das Forscherteam am Max-Planck-Institut für Kolloid- und Grenzflächenforschung um Dr. Wang bemüht sich daher, Partikel herzustellen, die nicht kugelsymmetrisch mit ihren Nachbarn wechselwirken. Dazu platzierten sie einen Kolloid-Kristall auf einer ebenen Oberfläche (Abb. 2). Durch Beschuss mit reaktiven Ionen reduzierten sie die Größe der Partikel der oberen Lagen gezielt und erweiterten die freien Flächen zwischen den Kolloiden.

Abb. 2: Schema der Herstellung von gezielt beschichteten Mikropartikeln. Links: Seitenansicht eines Kolloid-Kristalls bei Beschuss mit reaktiven Ionen. Mitte: Seitenansicht eines Kolloid-Kristalls, bei dem durch Ionen-Beschuss die Größe der oberen Kolloid-Lagen reduziert wurde; der Kristall wird mit Gold bedampft. Rechts: Aufsicht eines Kolloid-Kristalls mit kleineren Kolloiden (rosa) als oberster Schicht, einer mittleren Schicht (blau) und einer dritten Schicht (schwarz), die die Goldablagerungen (orange) als dreieckförmige Flächen enthält. (Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung)

Anschließend bedampften sie den Kristall mit Gold. Dabei gelangte ein kleiner Teil des Goldes durch die Lücken der oberen Schichten wie durch eine Maske bis auf die unteren Schichten. So ließen sich Beschichtungsmuster verschiedener Symmetrie und Größe im Nanometerbereich herstellen (Abb. 1). Zur Überraschung der Wissenschaftler lagerte sich aber auch in den tieferen Schichten auf der Unterseite der Partikel Gold an (Abb. 1 rechts).

Seit Jahren kennt die Chemie viele Methoden, um Gold gezielt in Reaktionen einzusetzen, zum Beispiel zum Anheften ganz bestimmter Moleküle. Daher erweitern die teilweise mit Gold belegten Partikel nun den Baukasten an "kolloidalen Atomen". Die Chemiker hoffen, damit in Zukunft "kolloidale Moleküle" aufbauen oder neuartige kolloidale Kristalle herstellen zu können. Für die Grundlagenforschung eröffnet sich hier ein interessantes Feld für das Studium der Dynamik bei komplexen Wechselwirkungen von Festkörpern und Molekülen. Und auch für die Farbenchemie ergeben sich neue Ausblicke: Neue, schillernde Farben, die sich zum Beispiel mit der Umgebungstemperatur oder der Luftfeuchtigkeit ändern, sind keine Utopie mehr. Langfristig am attraktivsten erscheint jedoch die Anwendung in der optischen Datenverarbeitung.

Quelle: MPG \[DW/AT\]

Weitere Infos:

  • Originalveröffentlichung:
    Gang Zhang, Dayang Wang, Helmuth Möhwald, Decoration of Microspheres with Gold Nanodots - Giving Colloidal Spheres Valences (p NA), Angewandte Chemie 117 (47) , 7945 (2005).
    http://dx.doi.org/10.1002/ange.200502117 
  • Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.:
    http://www.mpg.de 
  • Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam:
    http://www.mpikg.mpg.de

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen