Schlaf-Schrittmacher
Kieler Physiker und Lübecker Neurowissenschaftler belegen das Zusammenspiel von Hirnregionen im Schlaf.
Kieler Physiker und Lübecker Neurowissenschaftler belegen das Zusammenspiel von Hirnregionen im Schlaf.
Der Thalamus, ein Teil des Zwischenhirns, wird oft als „Tor zum Bewusstsein“ bezeichnet, da er von der Außenwelt kommende Sinnesreize filtert und zum Großhirn weiterleitet. Ein Computermodell, das die Auswirkungen von Schwingungen der Großhirnrinde während des Schlafes auf den Thalamus simuliert, haben jetzt die Kieler Physiker Jörg Mayer, Heinz Georg Schuster und Jens Christian Claussen und der Lübecker Neurowissenschaftler Matthias Mölle zusammen entwickelt. Klinische Messungen in Lübeck bestätigen, dass die Großhirnrinde im Schlaf als Taktgeber für den Thalamus arbeitet. Der Arbeitsgruppe gelang es, den Mechanismus zu identifizieren, der die thalamischen Schwingungen steuert. „Dies könnte in Zukunft ermöglichen, Schlaf durch äußere Signale besser zu beeinflussen“, meint Heinz Georg Schuster, Professor an der Uni Kiel. Die Studie wurde in der Fachzeitschrift Physical Review Letters veröffentlicht.
Das typische Muster thalamischer Aktivität während der Anfangsphasen des Schlafes sind so genannte Schlafspindeln, eine Folge von Wellen mit einer Frequenz von zirka 13 Hertz, die rund 1 Sekunde anhalten, die durch ruhige Perioden von etwa 4 Sekunden getrennt sind. Diese Schwingung bewirkt, dass die eingehende Information gefiltert wird. Schlafspindeln werden beim Menschen mit EEG (Elektroenzephalografie) gemessen. Wie voran gegangene Messungen an Tieren und EEG-Analysen zeigen, werden diese Schlafspindeln nicht selbstständig vom Thalamus generiert. Sie entstehen vielmehr im Wechselspiel von Großhirnrinde und Thalamus, dem thalamokortischen System.
„In unserer Arbeit zeigen wir an einem Computermodell des thalamokortischen Systems, dass sich viele experimentelle Beobachtungen reproduzieren lassen, wenn man annimmt, dass die Großhirnrinde im Schlaf der Taktgeber thalamischer Schwingungen ist“, erklärt der Hauptautor Jörg Mayer vom Institut für Theoretische Physik und Astrophysik an der Uni Kiel. Das experimentell beobachtete gleichzeitige Auftreten der Schlafspindeln in weiten Teilen des Thalamus wird durch die Kopplung der Großhirnrinde an den Thalamus getaktet. Dies unterscheidet sich fundamental vom Wachsein: Da nämlich leitet der Thalamus die eingehende Information an die Großhirnrinde weiter. Im Schlaf ist nun die Großhirnrinde dominierend und schaltet weite Teile des Thalamus gleich, was zu einer starken Verminderung des Informationsflusses durch den Thalamus führt.
In dem Kieler Modell wurden reale EEG-Daten der Großhirnrinde an ein Computermodell des Thalamus gekoppelt, und somit konnte die Reaktion des künstlichen Thalamus mit gemessenen thalamischen EEG-Daten verglichen werden. Die Reaktion ist dieselbe.
Die Arbeit ist ein Ergebnis des fachübergreifenden Sonderforschungsbereiches (SFB) 654 „Plastizität und Schlaf“ der Universitäten Kiel und Lübeck. Darin werden die Mechanismen untersucht, durch die Schlaf die Gedächtnisbildung verstärkt. Darauf aufbauend sollen schlafmedizinische Strategien entwickelt werden, um Erkrankungen besser behandeln zu können, bei denen Störungen der Gedächtnisbildung vorliegen, zum Beispiel bei schizophrenen oder Epilepsie-Patienten. Sprecher des SFB ist Professor Jan Born, Direktor des Instituts für Neuroendokrinologie der Universität zu Lübeck.
Quelle: Christian-Albrechts-Universität zu Kiel
Weitere Infos:
- Originalveröffentlichung:
Jörg Mayer, Heinz Georg Schuster, Jens Christian Claussen und Matthias Mölle, Corticothalamic Projections Control Synchronization in Locally Coupled Bistable Thalamic Oscillators, Phys. Rev. Lett. 99, 068102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.068102
http://www.arxiv.org/abs/q-bio/0702019v1 (Preprint) - Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel:
http://www.theo-physik.uni-kiel.de