Schlauer im Schwarm
Künstliche Mikroschwimmer durch Selbstorganisationsprozesse aneinander gebunden.
Wissenschaftler der Universitäten in Leipzig und Princeton haben in Experimenten herausgefunden, wie durch Informationsaustausch zwischen einzelnen Objekten neue Strukturen mit besonderen Eigenschaften entstehen können. Sie schafften es, mit gezielten Informationen Objekte – in diesem Fall künstliche Mikroschwimmer – aneinanderzubinden. Diese kleinsten mit Goldnanopartikeln dekorierten Polymerkugeln können sich zielgerichtet in Flüssigkeiten bewegen. Die Physiker und Chemiker fanden bei ihrem Experiment heraus, dass diese Mikroschwimmer, die wie lebende Systeme Energie in eine aktive Bewegung umwandeln, sich durch diese Bewegung aneinander binden lassen.
Abb.: Illustration der verwendeten Mikroschwimmer (Bild: F. Cichos)
Neben den fundamentalen Kräften existieren auch Mechanismen, die Strukturen bilden, ohne dass zwischen den Objekten eine direkte Kraft wirken muss. Derartige Selbstorganisationsprozesse existieren zum Beispiel in einem Schwarm von Bienen oder Vögeln. Lebendige Organismen nehmen Informationen aus ihrer Umwelt auf, verarbeiten und reagieren auf diese. Bereits Zellen oder Bakterien registrieren Informationen aus ihrer Umgebung über Rezeptoren und steuern so unter anderem ihre Bewegung.
Künstliche Systeme wie die von den Forschern untersuchten Mikroschwimmer können diese Information allerdings nicht verarbeiten und auf sie reagieren, erklärt Utsab Khadka, Postdoc in der Arbeitsgruppe von Haw Yang an der Universität in Princeton in den USA. Um diese Mikroschwimmer etwas schlauer zu machen, verwenden die Forscher einen Laser, der anhand der Information über die Entfernung anderer Schwimmer entscheidet, in welche Richtung die Schwimmer sich bewegen sollen. „Sobald man Informationen aus seiner Umgebung wahrnimmt, verarbeitet und auf diese reagiert, hat man die Möglichkeit, über die Wirkung physikalischer Kräfte hinaus zu gehen”, erläutert Frank Cichos von der Universität Leipzig. „Es lassen sich Strukturen erzeugen, die nicht mehr einfach nur vom komplexen Zusammenspiel der Wechselwirkung zwischen Ladungen entstehen“, fügt er hinzu.
Es gibt dazu ein berühmtes von James Clerk Maxwell ersonnenes Gedankenexperiment – den Maxwellschen Dämon: Ein kleiner Dämon ist in der Lage, eine Tür zwischen zwei Räumen zu öffnen und zu schließen, ohne Arbeit zu verrichten. Er beobachtet die Gasmoleküle in den zwei Räumen, und aufgrund seiner Beobachtung lässt er die schnellen Gasmoleküle durch die Tür in einen der beiden Räume und lässt die langsamen im anderen Raum. Dadurch entsteht ein Temperaturunterschied zwischen beiden Räumen, ohne dass der Dämon Arbeit zu verrichten hat. Der Prozess verstößt damit gegen die Gesetze der Physik, und man könnte mit dem Temperaturunterschied wieder eine Maschine betreiben, die Arbeit verrichtet. „Eine Lösung des Problems erhält man nur, wenn man die Information, die der Dämon über die Gasmoleküle sammelt, in seine physikalische Beschreibung mit einbezieht“, sagt Viktor Holubec, der mit einem Humboldt-
Die Forscher aus Leipzig und Princeton nutzten in ihren Experimenten die Information über den Abstand der Mikroschwimmer zueinander. Die Polymerkugeln reagierten auf diesen Abstand und organisierten sich allein dadurch zu einer Art Mikroschwimmer-
U. Leipzig / DE