Schnelle Taktraten mit topologischem Schutz
Lichtwellen-Elektronik mit topologischen Isolatoren kombiniert.
Sie werden immer schneller, leistungsfähiger – und heißer. Seit einigen Jahren stagniert die Taktrate von Computern, das heißt die Anzahl der möglichen Rechenoperationen pro Sekunde und Transistor, da die thermische Belastung zu groß wird. Physiker der Universitäten Regensburg, Marburg und Hiroshima sowie der Russischen Akademie der Wissenschaften in Novosibirsk haben nun eine Möglichkeit entdeckt, die Taktraten der Elektronik dennoch massiv zu erhöhen – und zwar ohne zusätzliche Wärmeentwicklung.
Abb.: Das elektrische Feld von Licht beschleunigt Elektronen (grüne Streifen) an der Oberfläche eines topologischen Isolators (elektronenmikroskopische Aufnahme links oben) bei optischen Taktraten. (Bild: U. Höfer, R. Huber, Abb.: B. Baxley, parttowhole.com)
Das Team um Ulrich Höfer, Fachbereich Physik der Universität Marburg, und Rupert Huber, Institut für experimentelle und angewandte Physik der Universität Regensburg, nutzt mit der Lichtwellen-
Allerdings nur in der Theorie, denn dann würden die Elektronen auch häufiger an Kristallatome stoßen, wodurch noch mehr Wärme erzeugt würde. Um dies zu verhindern, haben die Forscher tief in die Trickkiste der modernen Physik gegriffen: Statt des üblichen Halbleitermaterials Silizium setzen sie topologische Isolatoren ein, deren ungewöhnliche Eigenschaften erst seit wenigen Jahren bekannt sind. Auf der Oberfläche dieser Materialien sollten alle Elektronen, die sich in eine Richtung bewegen, ihren Spin gleich ausrichten, während die Spins gegenläufiger Elektronen in die gegensätzliche Richtung weisen. Würden Elektronen ihre Bewegungsrichtung nun durch Streuung ändern, so müsste auch ihr Spin umklappen. Da dies quantenphysikalisch nicht einfach möglich ist, streuen solche Elektronen selten und entwickeln damit auch kaum Wärme.
Nun haben die Forscher Lichtwellen-
Während der Beschleunigung lösen die Wissenschaftler mit ultravioletten Pulsen Elektronen aus der Oberfläche des topologischen Isolators aus und machen gewissermaßen Momentaufnahmen ihrer Geschwindigkeit. Aus solchen Schnappschüssen lassen sich schließlich ganze Zeitlupenfilme zusammensetzen, die zeigen, wie sich die Elektronen an der Oberfläche des topologischen Isolators auf der Zeitskala kürzer als eine einzige Lichtschwingung bewegen. „Absolut faszinierend“, findet Professor Höfer das Experiment, das seine zwei Mitarbeiter zusammen mit der Huber-
Die Physiker stellen fest, dass sich die Elektronen ähnlich wie Teilchen benehmen, die in einem großen Beschleuniger nahe Lichtgeschwindigkeit gebracht wurden. Noch wichtiger: Trotz der rasanten Beschleunigung funktioniert die theoretisch erwartete Kopplung zwischen Bewegungsrichtung und Spin so gut, dass sich die Elektronen über große Distanzen vollkommen ballistisch bewegen, ohne am Gitter zu streuen und damit Wärme zu erzeugen. „Das ist wie bei einer Billardkugel, die geradeaus rollt, solange sie von keiner anderen Kugel abgelenkt wird – nur viel, viel schneller“, erklärt Huber und freut sich: „Topologische Lichtwellen-
U. Regensburg / DE