Schwingend Rechnen im Netz der Möglichkeiten
Der „complex network computer“ verarbeitet Information nach einem neuen Prinzip – und könnte heutigen Rechnern eines Tages Konkurrenz machen.
Eine neue Weise Information zu verarbeiten haben Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) in Göttingen entwickelt. Der „complex network computer“ stellt eine Alternative zu anderen Möglichkeiten der Datenverarbeitung dar – wie etwa dem konventionellen Computer oder dem Quantencomputer. Voraussetzung ist ein System schwingender Elemente wie etwa Laser, die mit einander wechselwirken können. Die Forscher konnten zeigen, dass sich die charakteristische Dynamik eines solchen Systems geschickt nutzen lässt, um sämtliche logische Operationen auszuführen. Einige Aufgaben wie etwa das grobe Sortieren von Zahlen löst der complex network computer sogar deutlich schneller als der konventionelle. In einem ersten Schritt konnten die Forscher zudem einen Roboter nach dem neuen Prinzip programmieren.
Abb.: Die abgebildeten Netze gehören zu einem System aus fünf Elementen. Jeder Sattelpunkt ist mit vier anderen verbunden. Eine Rechnung beginnt an einem Sattelpunkt. Je nach Art des Eingangssignals sucht sich das System verschiedene Wege durch das Netz der Sattelpunkte. Zwei der möglichen Wege sind in dem Bild orange und blau dargestellt. (Bild: MPIDS)
„Völlig anders als bei der klassischen Informationsverarbeitung auf dem PC beruht unser neues Konzept nicht auf einem binären System aus Nullen und Einsen“, erklärt Marc Timme, Leiter der Forschungsgruppe Netzwerk-Dynamik am MPIDS. Als Grundbausteine des complex network computer sind zudem prinzipiell alle Systeme denkbar, die schwingen können. „Das einfachste Beispiel ist ein Pendel“, so Timme. Doch auch bestimmte Stromkreise, deren Bauteile die elektrische Ladung rhythmisch unter einander austauschen, oder Laser können in übertragenem Sinne schwingen. Stehen mehrerer solcher Grundbausteine miteinander in Verbindung – wie etwa mehrere Pendel, die über eine Feder miteinander gekoppelt sind – zeigen sie ein spezielles dynamisches Verhalten, das sich geschickt zum Verarbeiten von Daten nutzen lässt.
Schlüssel zu diesem Verhalten sind so genannte Sattelpunkte. Gemeint sind Zustände des Gesamtsystems die in mancher Hinsicht stabil, in anderer instabil sind. Im Fall gekoppelter Pendel entspricht eine bestimmte Choreographie der Schwingungen, bei der sich bestimmte Pendel synchron bewegen, einem solchem Sattelpunkt-Zustand.
Allgemein bilden in Systemen gekoppelter schwingender Elemente solche Sattelpunkt-Zustände eine Art Netzwerk: Als Reaktion auf eine äußere Störung, die einen bestimmten Sattelpunkt-Zustand destabilisiert, geht das Gesamtsystem in einen anderen Sattelpunkt-Zustand über. „In unserem Beispielsystem führt jeder Sattelpunkt so zu zwei weiteren, die wiederum mit zwei weiteren Zuständen verbunden sind“, beschreibt Fabio Schittler Neves. Welchen Weg sich das System in diesem Netz möglicher Zustände tatsächlich bahnt, hängt von der Art der Störung ab.
„In unserem Konzept fassen wir jede Störung als Eingangssignal auf, das aus mehreren Teilsignalen zusammengesetzt sein kann“, so Schittler Neves. Jedes Teilsignal spricht eines der schwingenden Elemente des Gesamtsystems an. Im Fall einer Gruppe gekoppelter Pendel etwa entspricht ein Teilsignal somit einem kleinen Schubs, den ein einzelnes Pendel erhält. Das Verhältnis der Stärken dieser Teilsignale gibt dann den Ausschlag, welchem neuen Sattelpunkt-Zustand das System zustrebt.
Das Eingangssignal bestimmt somit einen ausgesuchten Weg durch das Netzwerk der Sattelpunkte. Der eingeschlagene Pfad entspricht dem Ergebnis der Rechnung. „Der Zustand, den das System so annimmt, erlaubt Rückschlüsse auf das Größenverhältnis der einzelnen Teilsignale“, erläutert Timme. „Es ist eine Art Sortieren nach Größe.“
Die Forscher konnten nun zeigen, dass sich auf dieser Fähigkeit eine komplette Logik aufbauen lässt: Alle logischen Operationen – wie etwa Addition, Multiplikation und Verneinung – lassen sich so darstellen. Doch während beim klassischen Computer ein Bauteil – also ein Teilsystem des gesamten Computers – eine bestimmte logische Operation wie beispielsweise eine Addition ausführt, findet im Fall des complex network computer die Operation gleichzeitig im gesamten Netzwerk statt.
Dadurch können bereits relativ kleine Systeme eine unglaublich große Vielzahl möglicher Operationen ausführen: Während mit fünf schwingenden Elementen lediglich zehn verschiedene Systemzustände erreicht und somit zehn verschiedene Rechnungen ausgeführt werden können, ergeben sich für 100 Elemente bereits 5 × 1020. Zudem löst der complex network computer einige Aufgaben wie etwa das grobe Sortieren von Zahlen deutlich schneller als sein konvetionelles Gegenstück.
In einer ersten Anwendung hat sich das neue Rechenprinzip bereits bewährt. So konnten die Wissenschaftler einen einfachen Roboter konstruieren, der sich selbst den Weg durch einen Hindernisparcour sucht. Die Eingangssignale seiner Sensoren entsprechen dabei den Störungen des Systems. „Als Hardware könnten in diesem Fall elektrische Schwingkreise dienen“, erklärt Schittler Neves. „In unserer allerersten Anwendung haben wir mit einem herkömmlichen Computer ein solches System elektrischer Schwingkreise zunächst simuliert, um den Roboter zu steuern“, ergänzt er. An einer konkreten Umsetzung in elektronischer Hardware arbeiten die Wissenschaftler gerade.
Hoffnungen setzen die Göttinger Forscher in Systeme gekoppelter Laser. Diese weisen nicht nur genau abgestimmte Frequenzen auf, die eine weitere Voraussetzung für complex network computer sind, sondern zeichnen sich auch durch besonders hohe Frequenzen von bis zu einigen Milliarden Schwingungen pro Sekunde aus, mit denen ein Computer besonders schnell rechnen könnte.
MPIDS / PH