12.06.2024

Smarte Wartung

Demonstrator für die Anlagenwartung vereint fortschrittliche Sensorik mit künstlicher Intelligenz.

Aufbauend auf Ergebnissen des iCampus Projektes ForTune hat das Fraunhofer IPMS einen neuen Demonstrator entwickelt, der Sensorik, Datenerfassung und KI-basierte Datenauswertung für die Zustandsüberwachung und vorausschauende Wartung kombiniert. Damit eröffnen sich neue Möglichkeiten für die vorbeugende Instandhaltung von Anlagen und Maschinen. Das Fraunhofer IPMS nutzt seine Expertise im Edge Computing sowie Echtzeit-Datenübertragung. Marcel Jongmanns, Leiter des Projekts am Fraunhofer IPMS, erklärt: „Unsere Lösung ermöglicht eine präzise Zustandsüberwachung von Maschinen durch den Einsatz von Sensoren und intelligenter Datenanalyse. Die Integration von KI in die Sensoren ermöglicht es uns, Schäden zu erkennen, bevor sie auftreten, und so Wartungsintervalle zu optimieren und Ausfallzeiten zu minimieren.“


Abb.: Der Demonstrator für die vorausschauende Wartung von Industrieanlagen
Abb.: Der Demonstrator für die vorausschauende Wartung von Industrieanlagen
Quelle: S. Lassak / Fh.-IPMS

Der ShowCase zeigt ein miniaturisiertes Förderband und demonstriert die Leistungsfähigkeit einer neuartigen Toolbox für die Überwachung von Industrieanlagen. In dem Demonstrator werden multimodale Sensoren eingesetzt. Die sensorische Funktion erfasst dabei Beschleunigungen in den Raumrichtungen und die korrespondierenden Drehraten. Zusätzlich werden Magnetfeldsensoren und akustische beziehungsweise Ultraschallsensoren zur Überwachung des Systems eingesetzt. 

Das System bietet zwei Hauptfunktionen: Die Erkennung der Bandspannung und die Erkennung von Blockaden. Die KI-Modelle basieren dabei auf umfangreichen Datenanalysen und ermöglichen die präzise Vorhersage von Schäden. Um die Genauigkeit der Modelle zu erhöhen, können Echtzeitkalibrierungen durchgeführt werden, um das System an neue Umgebungen anzupassen.

Die Systemlösung des Fraunhofer IPMS zielt darauf ab, die hauseigenen Sensoren mit einer eigenen Edge-Computing Einheit auf Basis der RISCV Architektur für eine effiziente Datenverarbeitung direkt am Einsatzort zu kombinieren. Dadurch werden komplexe KI-Operationen sowie Echtzeitanalysen ermöglicht. Sich ändernde Umgebungseinflüsse lassen sich so direkt modellieren beziehungsweise in der Analyse berücksichtigen. Dadurch wird die Einbindung einer Vielzahl von Sensoren möglich und die Vorhersagegenauigkeit über den Zustand der Industrieanlage deutlich erhöht. Bestehende Limitierungen in der Rechenleistung für die Echtzeitmodellierung in eingebetteten Systemen lassen sich überwinden.

Die Expertise des Fraunhofer IPMS im Bereich Sensorik und KI-Auswertung ermöglicht die kontinuierliche Weiterentwicklung der Technologie. Bereits bestehende Partnerschaften mit Unternehmen, wie der Vetter Kleinförderbänder GmbH, zeigen das Interesse der Industrie an solchen Lösungen.

Fh.-IPMS / DE


ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen