Durch gezielte Veränderungen der Zusammensetzung von Kesterit-Halbleitern lässt sich ihre Eignung als Absorbermaterial in Solarzellen verbessern. Wie ein Team am Helmholtz-Zentrum Berlin zeigte, gilt dies besonders für Kesterite, in denen Zinn durch Germanium ersetzt wurde. Die Forscher untersuchten die Proben mit Hilfe von Neutronenbeugung am BER II und weiteren Methoden.
Abb.: Die Einblendung zeigt den typischen Aufbau eines Kristalls mit Kesteritstruktur, im Hintergrund sind die Kristallstruktur und die Elementarzelle angedeutet. (Bild: HZB)
Kesterite sind Halbleiterverbindungen aus den Elementen Kupfer, Zinn, Zink und Selen. Diese Halbleiter lassen sich als Absorbermaterial in Solarzellen nutzen, schaffen aber bisher nur Wirkungsgrade von maximal 12,6 Prozent, während Solarzellen aus Kupfer-Indium-Gallium-Selenid bereits über 20 Prozent erreichen. Dennoch gelten Kesterite als interessante Alternative zu CIGS-Solarzellen, weil sie aus häufig vorkommenden Elementen bestehen, so dass keine Engpässe zu erwarten sind. Ein Team um Susan Schorr am HZB hat jetzt eine Reihe von nicht-stöchiometrischen Kesterit-Proben untersucht und den Zusammenhang zwischen Zusammensetzung und optoelektronischen Eigenschaften beleuchtet. Bei der Synthese der Proben am HZB wurden die Zinn-Atome durch Germanium ersetzt.
Diese Proben untersuchten die Forscher mit Neutronenbeugung am BER II. Denn mit dieser Methode lassen sich die Elemente Kupfer, Zink und Germanium besonders gut voneinander unterscheiden und ihre Positionen im Kristallgitter verorten. Die Diagnose: Kesterite mit einer leicht kupferarmen und zinkreichen Zusammensetzung, wie sie auch in Solarzellen mit den höchsten Wirkungsgraden zu finden ist, weisen die geringste Konzentration an Punktdefekten, sowie die niedrigste Kupfer-Zink-Unordnung auf. Je kupferreicher die Zusammensetzung wird, desto mehr steigt die Konzentration von anderen Punktdefekten, die als eher abträglich für die Leistungsfähigkeit von Solarzellen gelten. Weitere Untersuchungen zeigten, wie die Energiebandlücke von der Zusammensetzung der Kesterit-Pulverproben abhängt.
„Diese Bandlücke ist eine Eigenschaft der Halbleiter und bestimmt, welche Lichtfrequenzen im Material Ladungsträger freisetzen“, erklärt Team-Mitglied René Gunder. „Wir wissen nun, dass Germanium die optische Bandlücke vergrößert und damit dem Material ermöglicht, einen größeren Anteil des Sonnenlichts in elektrische Energie umzuwandeln.“ Und Susan Schorr ergänzt: „Wir sind davon überzeugt, dass solche Kesterite sich nicht nur für Solarzellen eignen, sondern auch für andere Anwendungen in Frage kommen. So könnten Kesterite als Photokatalysatoren mit Hilfe von Sonnenlicht Wasser in Wasserstoff und Sauerstoff aufspalten und Solarenergie in Form von chemischer Energie speichern.“
HZB / RK