Etwa 99 Prozent der Sonnenenergie entstammen dem Standard-Sonnenmodell zufolge einer Abfolge von Fusionsprozessen, bei der Wasserstoff zu Helium wird. Sie startet mit der Verschmelzung zweier Protonen zu einem schweren Wasserstoffkern, daher auch pp-Kette genannt. Bei einigen dieser Prozesse werden auch Neutrinos charakteristischer Energien freigesetzt, so dass sich der Verlauf der pp-Kette genau rekonstruieren lässt.
Abb.: Neutrinos geben Aufschluss über die inneren Vorgänge der Sonne. (Bild: NASA / SDO)
Das Experiment Borexino, tief unter den Bergen des italienischen Gran-Sasso-Massivs, ist seit 2007 in Betrieb und darauf spezialisiert, diese solaren Neutrinos zu detektieren. Nun legen die Wissenschaftler erstmals eine Gesamtuntersuchung der Fusionsvorgänge der pp-Kette mittels Neutrinos vor. Sie bestimmten dabei die Wechselwirkungsraten der einzelnen Prozesse mit bisher nicht erreichter Präzision. In Deutschland sind neben der TU München das Institut für Kernphysik des Forschungszentrums Jülich, das Institut für Experimentalphysik der Universität Hamburg, die RWTH Aachen, die Johannes-Gutenberg-Universität Mainz und die Physik-Fakultät der Technischen Universität Dresden beteiligt.
„Die Ergebnisse bestätigen insgesamt unsere theoretischen Vorstellungen von den Vorgängen im Inneren der Sonne“, sagt Stefan Schönert, Professor für Astroteilchenphysik und Co-Sprecher des Sonderforschungsbereichs 1258 an der TU München und Mitglied des neuen Origins-Clusters.
Das Borexino-Team berechnete auch die Energieproduktionsrate der Sonne und verglich diese mit der Abschätzung auf Basis ihrer elektromagnetischen Strahlung. Beide Werte stimmen sehr gut überein. Dies zeigt, dass die Sonnentätigkeit seit mindestens hunderttausend Jahren unverändert ist, denn das Sonnenlicht braucht etwa diese Zeitspanne, um die Energieproduktionszone im Sonneninneren zu verlassen, während Neutrinos bereits nach acht Minuten die Erde erreichen.
Die Borexino-Ergebnisse geben auch einen interessanten Hinweis auf ein bisher nicht gelöstes Sonnenrätsel: Wie hoch ist Konzentration an Kernen schwerer als Wasserstoff und Helium, also die Metallizität? Je höher, desto mehr Licht wird absorbiert. Das hat Einfluss auf Temperatur, Größe, Helligkeit und Lebensdauer der Sonne.
Die Sonne gilt bisher als ein Stern mit niedriger Metallizität. „Unsere Ergebnisse deuten nun auf ein Temperaturprofil hin, welches eher auf eine hohe Konzentration hinweist“, fasst Lothar Oberauer von der TU München, eines der Gründungsmitglieder des Borexino-Experiments, die Ergebnisse zusammen.
TU München / DE