Stärker als Stahl und Spinnenseide
Neue Produktionsmethode überträgt Eigenschaften von Nanomaterialien in die Alltagswelt.
An der Röntgenlichtquelle PETRA III des Deutschen Elektronen-
Abb.: Rasterelektronenmikroskop-Aufnahme einer fertigen Faser. (Bild: N. Mittal, KTH Stockholm)
Die Wissenschaftler nutzen kommerziell angebotene Zellulose-Nanofasern, die nur etwa zwei bis fünf Nanometer dünn und bis zu siebenhundert Nanometer lang sind. Die Nanofasern werden in Wasser durch einen dünnen, nur einen Millimeter breiten Kanal in einem Stahlblock geschickt. Dieser Kanal besitzt zwei Paare seitlicher Zuflüsse, durch die entionisiertes Wasser sowie Wasser mit niedrigem pH-Wert einfließen. Dadurch wird der Strom der Nanofasern zusammengepresst und beschleunigt. Diese hydrodynamische Fokussieung sorgt dafür, dass sich die Nanofasern in der gewünschten Orientierung ausrichten und sich von selbst zu einem eng gepackten Faden zusammenlagern. Die Nanofasern haften dabei ganz ohne Klebstoff oder irgendeine andere Zutat durch supramolekulare Kräfte zusammen, die zwischen den Nanofasern wirken, beispielsweise elektrostatische und Van-
Im hellen Röntgenstrahl von PETRA III konnten die Forscher den Prozess im Detail verfolgen und optimieren. „Das Röntgenlicht erlaubt uns, die detaillierte Struktur des Fadens zu analysieren, während er entsteht. Das schließt sowohl die Materialstruktur ein als auch die hierarchische Ordnung in den superstarken Fasern“, erläutert Stephan Roth, Leiter der Mikro- und Nanofokus-
Die Untersuchung zeigte eine Biegesteifigkeit des Materials von 86 Gigapascal und eine Zugfestigkeit von 1,57 Gigapascal. „Die von uns hergestellten biobasierten Nanozellulosefäden sind achtmal steifer und einige Male zugfester als die Abseilfäden aus natürlicher Spinnenseide“, betont Söderberg. „Wenn man ein biobasiertes Material sucht, gibt es nichts wirklich Vergleichbares. Es ist auch stärker als Stahl und alle anderen Metalle oder Legierungen sowie als Fiberglas und die meisten anderen synthetischen Materialien.“ Die künstlich hergestellten Zellulosefäden lassen sich etwa zu einem Stoff für verschiedenste Anwendungen weben. Die Forscher schätzen, dass die Produktionskosten des neuen Materials dabei mit denen besonders fester synthetischer Stoffe konkurrieren können. „Aus dem neuen Material lassen sich im Prinzip biologisch abbaubare Bauteile entwickeln“, ergänzt Roth.
Die in der Untersuchung beschriebene neue Methode ahmt die Fähigkeit der Natur nach, Zellulose-
„Wir können jetzt die überragende Leistung aus dem Nanokosmos in den Makrokosmos übertragen“, betont Söderberg. „Ermöglicht hat diese Entdeckung, dass wir gelernt haben, die fundamentalen Schlüsselparameter für die perfekte Nanostrukturierung wie beispielsweise Partikelgröße, Wechselwirkungen, Ausrichtung, Ausbreitung, Netzwerkbildung und Gruppierung zu verstehen und zu kontrollieren.“ Der Prozess kann den Wissenschaftlern zufolge auch benutzt werden, um beispielsweise die Gruppierung von Kohlenstoff-
DESY / RK