23.06.2014

Stromfluss gegen die Erwartung

Dünne isolierende Schicht verbessert dank elektrostatischer Effekte den Kontakt zwischen metallischen und organischen Halbleitern.

Organische Halbleiter ermöglichen flexible, biegsame Bildschirme (OLEDs), Solarzellen (OPVCs) und andere interessante Anwendungen. Ein Problem dabei ist aber die Grenzfläche zwischen den metallischen Kontakten und dem organischen Halbleitermaterial, an der unerwünschte Verluste auftreten. Nun hat Martin Oehzelt vom HZB Helmholtz-Zentrum Berlin für Materialien und Energie GmbH gezeigt, worauf es ankommt, wenn diese Verluste zwischen Metall und organischem Halbleiter minimiert werden sollen. Insbesondere erklärt sein Modell auch, warum eine dünne, elektrisch isolierende Schicht zwischen den beiden Materialien den Übergang von Ladungsträgern sogar erleichtern kann.

Abb.: Eine ultradünne dielektrische Schicht kann den Übergang der Ladungsträger (rot) vom organischen Halbleiter in das Metall erleichtern. Sie schafft eine kontinuierliche Verbindung zwischen den Energieniveaus im organischen Material (blau) und im Metall (schwarz, Fermi-level; Bild: M. Oehzelt, HZB)

Aktuell gibt es viele unterschiedliche Ansätze, um diesen Übergang zwischen organischen Halbleitermaterialien und den metallischen Kontakten zu beschreiben. Diese teilweise widersprüchlichen Theorien, von denen aber keine in vollem Umfang gültig ist, hat Oehzelt nun vereinheitlicht und ein universelles Modell entwickelt, das vor allem auf dem elektrostatischen Potential basiert, das von den Ladungsträgern im Metall und im organischen Halbleiter hervorgerufen wird. „Ich habe die Auswirkungen der Ladungsträgerverteilung auf die elektronischen Zustände an der Grenzfläche berechnet und wie diese Veränderung auf die Ladungsträgerverteilung zurückwirkt“, erklärt er. Oehzelt forscht zurzeit als Postdoktorand mit Georg Heimel bei Norbert Koch, die an der Humboldt-Universität zu Berlin und am Helmholtz-Zentrum Berlin arbeiten.

Solche Berechnungen hatte bislang vor Martin Oehzelt noch niemand so konsequent durchgeführt. Dabei stellte Oehzelt fest: „Für mich war überraschend, dass hier die quantenphysikalische Ebene gar nicht so stark in Erscheinung tritt. Die elektrostatischen Effekte überwiegen! Das sehen wir auch daran, wie gut das Modell zu Messergebnissen passt.“ Am Beispiel von Pentazen, einem gebräuchlichen organischen Halbleiter, hat Oehzelt die Vorhersagen des Modells zu den Grenzflächenverlusten quantitativ überprüft.

Dabei entscheidet die Energieverteilung der elektronischen Zustände im organischen Halbleiter darüber, welche Mindestbarriere die Ladungsträger beim Übergang vom oder in das Metall überwinden müssen. Die Berechnung zeigt auch, wie die Form dieser Energiebarrieren dabei variieren kann, von einer Stufe bis hin zu langsam und kontinuierlich ansteigenden Kurven, die zu wesentlich weniger Verlusten führen. Dies lässt sich dadurch erreichen, dass man zwischen dem organischen Halbleiter und dem Metall eine hauchdünne isolierende Schicht einfügt. Entgegen der allgemeinen Erwartung verbessert also das Einfügen eines Isolators den elektrischen Kontakt. Die Ergebnisse dieser Arbeit könnten es deutlich erleichtern, Grenzflächen und Kontakte zu optimieren und damit effizientere organische Halbleiterbauelemente zu entwickeln.

HZB / DE

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen