Tausende von Kilometern tief in die Erde schauen
Gesteinseigenschaften unter extremem Druck mit Laserstrahl und Standard-Diamant-Stempelzelle messen.
In den Geowissenschaften ist die Dichte von Mineralien, Gesteinen und Schmelzen bei Drücken von bis zu mehreren Millionen Atmosphären und Temperaturen von mehreren tausend Grad von entscheidender Bedeutung, da sie die langfristige Entwicklung von Planeten sowie vulkanische Prozesse bestimmt. Aber wie kann die Dichte eines Materials unter solch extremen Bedingungen gemessen werden? Um diese Frage für ein kristallines Mineral oder ein Gestein zu beantworten, nutzen Forscher bislang Röntgenbeugung, mit der man Abstände zwischen periodisch angeordneten Atomen messen kann, um das Volumen zu quantifizieren. Es gibt jedoch ein Problem, wenn das Material eine ungeordnete Struktur hat, also nicht-kristallin ist, wie Gläser oder geschmolzenes Gestein. In diesem Fall muss das Volumen der Probe direkt gemessen werden.
Solche Messungen sind jedoch wegen des winzigen Volumens der unter hohen Druck gesetzten Proben äußerst schwierig. Bisher waren dafür Großforschungseinrichtungen und eine hochspezialisierte Ausstattung erforderlich. Jetzt stellt ein Team um den Wissenschaftler Sergey Lobanov vom Deutschen Geoforschungszentrum eine neue Methode vor, bei der ein Laser von der Größe eines Schuhkartons es ermöglicht, das Volumen von Proben zu messen, die auf einen Druck gebracht wurden, der dem in der Tiefe von mehr als zweitausend Kilometern entspricht.
Mit einem einfachen Trick gelang es den Forschern, den Brechungsindex und die Dichte von Siliziumdioxid-Glas, einem wichtigen Material in Industrie und Geologie, bei einem Druck von bis zu 110 Gigapascal zu messen. Die Forscher verwendeten einen Mehrfarbenlaser, um die Helligkeit der reflektierten Strahlung einer unter Druck stehenden Probe zu messen. Die Helligkeit der Laserreflexion enthielt Informationen über den Brechungsindex, aber auch über die Weglänge des Laserstrahls in der Probe. Materialien mit einem hohen Brechungsindex und einer hohen Dichte, wie Diamanten und Metalle, erscheinen unserem Auge normalerweise hell und glänzend. Anstatt die winzigen Proben mit bloßem Auge zu betrachten, verwendeten Lobanov und seine Kollegen ein leistungsfähiges Spektrometer, um Helligkeitsänderungen bei hohem Druck aufzuzeichnen. Diese Messungen ergaben den Brechungsindex von Siliziumdioxid-Glas und lieferten wichtige Informationen zur Bestimmung seiner Dichte.
„Die Erde war vor 4,5 Milliarden Jahren ein riesiger Ball aus geschmolzenem Gestein. Um zu verstehen, wie sie abgekühlt ist und einen festen Erdmantel und eine Kruste gebildet hat, müssen wir die physikalischen Eigenschaften von geschmolzenem Gestein bei extremem Druck kennen“, sagt Lobanov. „Wir haben nun gezeigt, dass die Entwicklung des Probenvolumens und der Dichte beliebiger transparenter Gläser mit optischen Techniken bis zu einem Druck von mindestens 110 Gigapascal genau gemessen werden kann. Das kann außerhalb von Synchrotron-Anlagen erfolgen und ist daher viel einfacher und kostengünstiger. Unsere Arbeit ebnet somit den Weg für künftige Untersuchungen von Gläsern, die sich den heutigen und längst vergangenen Schmelzen der Erde annähern. Diese zukünftigen Studien werden neue quantitative Antworten auf die Entwicklung der frühen Erde sowie auf die treibenden Kräfte hinter Vulkanausbrüchen liefern.“
Da die Proben extrem klein und damit hauchdünn sind, werden selbst Materialien, die in großen Stücken wie ein Gesteinsbrocken aussehen, durchsichtig. Den Forschern zufolge eröffnen diese Entwicklungen neue Möglichkeiten zur Untersuchung der mechanischen und elektronischen Eigenschaften von nichtkristallinen Festkörpern, die in größeren Volumina undurchsichtig erscheinen. Nach Ansicht der Wissenschaftler haben ihre Erkenntnisse weitreichende Auswirkungen auf die Materialwissenschaft und die Geophysik. Darüber hinaus könnten diese Informationen als Maßstab für rechnerische Untersuchungen der Transporteigenschaften von Gläsern und Schmelzen unter extremen Bedingungen dienen.
GFZ / RK
Weitere Infos
- Originalveröffentlichung
S. S. Lobanov et al.: Electronic, Structural, and Mechanical Properties of SiO2 Glass at High Pressure Inferred from its Refractive Index, Phys. Rev. Lett. 128, 077403 (2022); DOI: 10.1103/PhysRevLett.128.077403 - Chemie und Physik der Geomaterialien, Helmholtz-Zentrum Potsdam – Deutsches Geoforschungszentrum