Tiefkühl-Elektronik für den Superrechner
Neue Technologie macht Quantencomputer industrietauglich.
Damit Quantencomputer in zukünftigen Anwendungen, wie etwa der künstlichen Intelligenz oder dem maschinellen Lernen, ihr volles Potenzial ausschöpfen können, läuft die Forschung an der dahintersteckenden Auslese-Elektronik auf Hochtouren. Forscher am Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration arbeiten dafür an nur zehn Mikrometer dünnen supraleitenden Verbindungen und kommen damit der Umsetzung kommerziell nutzbarer Quantencomputer einen großen Schritt näher.
Bislang ermöglichten Quantencomputer der ersten beiden Generationen grundlegende Erkenntnisse zu den Funktionsweisen der Geräte. Funktionale Vorreiter, etwa am Forschungszentrum Jülich, bringen es im Betrieb aktuell auf beachtliche 5.000 Qubits, also 25.000 potenzielle Zustände für jedes einzelne Quantenteilchen. Aus diesen ersten Errungenschaften ergeben sich jedoch auch Hürden: Das komplexe Geflecht sich überlagernder Qubits ist empfindlich, wodurch sich bisweilen Fehler in die Rechnungen einschleichen können. Deshalb muss eine Fehlerkorrektur die Lösungen perfektionieren, wofür wiederum das Vielfache der Qubits gebraucht wird, die für die eigentliche Rechnung notwendig waren. So visieren Forscher etwa eine Größenordnung von mindestens 100.000 bis zu einer Million Einheiten für ein einziges Gerät an.
Um eine so hohe Qubit-Dichte in einem System zu erzielen, müssen neue integrierte Schaltungen und Leitungen in extremer Miniaturisierung hergestellt werden. Gleichzeitig müssen diese für Temperaturen von bis zu -273° C gewappnet sein. Denn nur in solchen Umgebungen verlangsamen sich die Gitterschwingungen in den Festkörpern so weit, dass die Qubits länger verschränkt bleiben und damit leichter manipuliert oder ausgelesen werden können. Damit es nicht zur Eigenerwärmung durch elektrische Ströme kommt, werden bei tiefen Temperaturen verlustfreie Supraleiter eingesetzt. Für die Entwicklung und den Aufbau genau dieser supraleitenden Umverdrahtungen und das kryogene Packaging ist ein Team um Hermann Oppermann am Fraunhofer-IZM in Berlin verantwortlich.
Für eine effiziente Verbindungstechnik bei Tiefsttemperaturen mithilfe von Lotkontakten, den Bumps, entwickelten die Forschenden eine neue auf Indium basierende Technologie. Das Material ist unterhalb von 3,4 Kelvin supraleitend und erweist sich auch nah des absoluten Nullpunkts als robust. Zur Erzeugung von Elektronikstrukturen aus Indium wird es mithilfe eines speziellen Elektrolyten galvanisch abgeschieden. Hierfür musste das Indium von dem bei diesen Strukturbreiten üblichen Nickelsockel auf einen alternativen Sockel transferiert werden. Das Ersetzen dieser Basis war notwendig, da Nickel durch seine Eigenschaften große Magnetfelder produziert, welche zu Störungen der Qubits führen würden. Mit dem neuen metallischen Übergang entsteht eine verträgliche Startschicht für die anschließende Indiumabscheidung. Diese Prozesse ermöglichen eine weltweit ungeschlagene Miniaturisierung für kryogene Verbindungen, beträgt doch der Rasterabstand der Leiterbahnen weniger als zehn Mikrometer.
Bemerkenswert ist auch der Aufbau extrem verlustarmer und supraleitender Verbindungen aus Niob und Niobnitrid: Mithilfe einer neu entwickelten Methodik wurden die Niob-Materialien flächig aufgebracht und mit einem Ionenstrahl geätzt. Somit entstehen kompakte kryogeeignete Verbindungen, die aufgrund ihrer herausragenden Legierung hohe Stromdichten erlauben. Nach dem Aufbau der Indium-Bumps und der supraleitenden Schaltungsträger wurden die Elemente in einem kryogenen Messstand bei Temperaturen von bis unter drei Kelvin erfolgreich getestet.
Im Rahmen des InnoPush-Projekts „HALQ – Halbleiterbasiertes Quantencomputing“ wurde gemeinsam mit den Projektpartnern eine übergreifende Plattform aufgebaut, welche Technologien der Mikroelektronik für die Anwendung in höchstskalierbaren Quantencomputern zugänglich macht.
Fh.-IZM / RK
Weitere Infos