Ultrastarke Wechselwirkung zwischen Licht und Materie realisiert
Mikrowellen-Photonen wechselwirken mit Atomen eines nanostrukturierten Schaltkreises zehnmal stärker als bisher erreicht.
Mikrowellen-Photonen wechselwirken mit Atomen eines nanostrukturierten Schaltkreises zehnmal stärker als bisher erreicht.
Die Wechselwirkung zwischen Licht und Materie ist einer der fundamentalsten Prozesse der Physik. Ob sich unser Auto im Sommer aufgrund der Absorption von Lichtquanten in einen Backofen verwandelt, ob Solarzellen aus Licht Strom gewinnen oder Leuchtdioden Strom in Licht umwandeln, überall in unserem täglichen Leben begegnen wir Auswirkungen dieser Prozesse. Auch für die Entwicklung der so genannten Quanten-Computer ist das Verständnis der Wechselwirkungen zwischen einzelnen Lichtteilchen, Photonen, und Atomen entscheidend.
Abb.: Künstlerische Darstellung der Wechselwirkung eines supraleitenden Quantenschaltkreises mit einem Mikrowellenphoton. (Bild: Dr. A. Marx, TU München)
Physiker der Technischen Universität München (TUM), des Walther-Meißner-Instituts für Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften (WMI) und der Universität Augsburg haben nun zusammen mit Partnern aus Spanien eine ultrastarke Wechselwirkung von Mikrowellen-Photonen mit den Atomen eines nanostrukturierten Schaltkreises realisiert. Die erreichte Wechselwirkung ist zehnmal stärker als die bisher für solche Systeme erzielten Werte.
Das einfachste System zur Untersuchung der Wechselwirkung zwischen Licht und Materie besteht aus einem so genannten Hohlraum-Resonator, in dem genau ein Lichtteilchen, ein Photon, und ein Atom eingesperrt sind (Cavity quantum electrodynamics, cavity QED). Die Experimente sind hier extrem aufwändig, da die Wechselwirkung sehr schwach ist. Eine sehr viel stärkere Wechselwirkung lässt sich mit nanostrukturierten Schaltkreisen erzielen, in denen bei Temperaturen knapp über dem absoluten Nullpunkt Metalle wie Aluminium supraleitend werden (circuit QED). Richtig aufgebaut verhalten sich die vielen Milliarden Atome der nur wenige Nanometer dicken Leiterbahnen des Schaltkreises so wie ein einziges künstliches Atom und gehorchen den Gesetzen der Quantenmechanik. Anders als bei cavity QED-Systemen können die Wissenschaftler die Nano-Schaltkreise in weiten Bereichen gezielt maßschneidern. Im einfachsten Fall erhält man so ein System mit zwei Energiezuständen, ein so genanntes Quanten-Bit oder Qbit.
Für seine Messungen fing das Team um Gross das Photon in einer speziellen Box ein, einem Resonator. Dieser besteht aus einer supraleitenden Niob-Leiterbahn, die an beiden Enden mit für Mikrowellen sehr gut reflektierenden „Spiegeln“ ausgestattet ist. In diesem Resonator wird das künstliche, aus einem Aluminium-Schaltkreis bestehende Atom so platziert, dass es mit dem Photon optimal wechselwirken kann. Die ultrastarken Wechselwirkungen erzielten die Forscher, indem sie ein weiteres supraleitendes Bauteil in ihren Schaltkreis einfügten, einen so genannten Josephson-Kontakt.
Die gemessene Wechselwirkungsstärke erreichte bis zu zwölf Prozent der Resonatorfrequenz. Sie ist damit zehnmal stärker als bisher in circuit QED-Systemen gemessene Wechselwirkungen und viele tausendmal stärker als die in echten Hohlraum-Resonatoren messbaren Effekte. Doch mit dem Erfolg schufen die Wissenschaftler auch ein neues Problem: Bisher beschrieb die schon 1963 entwickelte Jaynes-Cummings-Theorie alle beobachteten Effekte gut. Im Gebiet der ultrastarken Wechselwirkungen scheint sie jedoch nicht mehr zu gelten. „Die Spektren sehen so aus, als hätten wir es hier mit einem völlig neuen Objekt zu tun”, sagt Gross. „Die Kopplung ist so stark, dass das Atom-Photon-Paar als eine neue Einheit betrachtet werden muss, eine Art Molekül aus einem Atom und einem Photon.“
Dies genauer zu untersuchen, wird Experimentalphysiker und Theoretiker noch eine Weile beschäftigen. Experimentell in diesen Bereich vorstoßen zu können, eröffnet den Wissenschaftlern aber jetzt schon eine Vielzahl neuer experimenteller Möglichkeiten. Die gezielte Manipulation solcher Paare aus Atom und Photon könnte der Schlüssel zur Quanten-basierten Informationsverarbeitung sein, den so genannten Quanten-Computern, die den heutigen Computern deutlich überlegen wären.
Technische Universität München/PH