Unverwechselbarer molekularer Fingerabdruck
Völlig neuartiges Lasermesssystem kann kleinste Veränderungen in der molekularen Zusammensetzung von Organismen erkennen.
Der Mix an Molekülen, der durch unseren Körper strömt, ist einzigartig und individuell. Diese Mischung kann u.a. Aufschluss über den Zustand von Organismen geben. Die große Kunst ist es nur, ihn in seiner ganzen Komplexität auszulesen. Das ist bisher unmöglich, da Messgeräte nicht empfindlich genug sind, um auch nur ansatzweise die Gesamtheit aller Moleküle richtig zu erfassen. Diesem Ziel ist man nun einen Schritt nähergekommen. Wissenschaftler des Labors für Atttosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) und der Ludwig-Maximilians-Universität München (LMU) haben nun ein weltweit einzigartiges Laser-Messsystem entwickelt, das – quer durch verschiedenste Molekültypen – kleinste Veränderungen in der molekularen Zusammensetzung von biologischen Proben detektieren kann.
In Organismen zirkulieren die verschiedensten Arten von Molekülen. Der Stoffwechsel lässt in den Zellen ständig verschiedenste neue Moleküle entstehen, die auch in die Umgebung, etwa in das Blut, abgegeben werden. Eines der großen Ziele der Biomedizin ist es, diesen Molekülmix detailliert zu erfassen und so Auskunft über den Zustand des Organismus zu gewinnen. Denn auch entartete Zellen wie etwa Krebszellen im menschlichen Körper produzieren ganz charakteristische Moleküle. Sie sind oft ein erster Hinweis auf eine Erkrankung. Das Problem dabei ist: Es gibt bisher nur äußerst wenige bekannte solcher Indikatormoleküle, die meist ohnehin in nur äußerst geringer Konzentration im Blut zirkulieren. Dementsprechend schwer ist es, sie nachzuweisen. Biomediziner gehen aber davon aus, dass es sehr viele solcher molekularen Krankheitssignaturen in verschiedensten Molekülklassen wie Protein-, Zucker oder Fettderivate gibt. Die große Herausforderung ist es, sie umfassend und genau genug mit einer einzigen Methode zu detektieren.
Um diesem Ziel näher zu kommen, hat ein interdisziplinäres Team aus Physikern, Biologen und Datenwissenschaftlern des Labors für Attosekundenphysik (LAP) der LMU und des Max-Planck-Instituts für Quantenoptik unter der Leitung von Ferenc Krausz ein neues Laser-Messsystem entwickelt. Mit seiner Hilfe ist es möglich, Fingerabdrücke der molekularen Zusammensetzung biologischer Proben jeglicher Art in Form von Infrarotlicht zu erhalten. Die Technologie arbeitet mit einer bisher noch nie erreichten Empfindlichkeit und kann für jede Biomolekülklasse eingesetzt werden.
Das System basiert auf Technologien, die im Labor für Attosekundenphysik für die Ultrakurzzeitmetrologie entwickelt wurden. Das neue Laserspektrometer, gebaut vom Team um den Physiker Ioachim Pupeza, beruht auf der Emission extrem starker Infrarot-Laserpulse über ein breites Spektrum im infraroten Wellenlängenbereich, die nur Femtosekunden dauern. Eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde. Das Prinzip dahinter: Moleküle werden durch die ultrakurzen Infrarot-Laserpulse zum Schwingen angeregt. Die neue Technologie detektiert dabei die gesamte schwingende Lichtwelle. Jede molekulare Verbindung schwingt bei bestimmten Eigenfrequenzen und trägt damit einen wohldefinierten Anteil zur detektierten Lichtwelle bei. Hier kann sich kein Molekül mehr verstecken.
„Wir haben mit unserem Laser nun einen breiten Wellenlängen-Bereich im Infrarot, von sechs bis zwölf Mikrometer, für die Anregung von Molekülen abgedeckt“, erklärt Marinus Huber, Mitarbeiter im Team von Biologin Mihaela Zigman, das im Labor für Attosekundenphysik ebenfalls an den Experimenten beteiligt war. „Anders als etwa die Massenspektroskopie gewährt uns diese Methode Zugang zu allen Molekültypen, aus denen biologische Proben zusammengesetzt sind“, erklärt Zigman.
Die kurzen Laserpulse zur Molekülanregung bestehen aus nur wenigen Schwingungen des Lichts. Das System erreicht dabei eine zweimal höhere Strahlungs-Brillanz, also Dichte an Photonen, als konventionelle Synchrotrons, in denen bisher Strahlung für ähnliche Molekularspektroskopie erzeugt wurde. Zudem ist die Infrarot-Strahlung räumlich und zeitlich kohärent. Alle physikalischen Parameter zusammen sind verantwortlich für die extrem hohe Sensitivität des neuen Lasersystems. Somit können auch sehr kleine spezifische Molekülkonzentrationen detektiert und damit der „molekulare Fingerabdruck“ sehr genau erstellt werden. Die neuen physikalischen Parameter ermöglichen es nun erstmals, wasserhaltige lebende Proben, die bis zu 0,1 Millimeter dick sind, mit Infrarotlicht zu durchleuchten und dadurch mit bisher nicht dagewesener Empfindlichkeit zu analysieren. In ersten Experimenten mit der neuen Technologie hat das LAP-Team bereits eine ganze Reihe unterschiedlichster Proben untersucht.
„Diese präzise Messung von Veränderungen in der molekularen Zusammensetzung von Körperflüssigkeiten eröffnet neue Möglichkeiten für Biologie und Medizin und könnte künftig insbesondere in der Frühdetektion von Krankheiten Anwendung finden,“ sagt Zigman.
MPG & LMU / OD
Weitere Infos
- Originalveröffentlichung
I. Pupeza et al.: Field-resolved infrared spectroscopy of biological systems, Nature 577, 52–59 (2020); DOI: https://doi.org/10.1038/s41586-019-1850-7 - AttoWorld: Laboratory for Attosecond Physics (LAP), Ludwig-Maximilians-Universität München (LMU) / Max-Planck-Institut für Quantenoptik (MPQ), Garching