Verzögerte Wahl zwischen Welle und Teilchen
Von John Archibald Wheelers Gedankenexperiment bis hin zu heutigen Umsetzungen.
Seit dem 17. Jahrhundert beschäftigte die Wissenschaft die Frage, was Licht ist. Issac Newton war überzeugt, dass es ein Strom von Teilchen ist. Sein Zeitgenosse Christiaan Huygens hingegen argumentierte, dass es sich um Wellen handelt. Die moderne Quantenphysik sagt, dass beide richtig lagen. Licht kann sowohl Teilchen als auch Welle sein – je nachdem, welche Eigenschaft in einem Experiment gemessen wird, zeigt es sich mehr als das eine oder das andere. Dieser sogenannte Welle-Teilchen-
Abb.: Man sieht den Schwanz, also die Quelle der Teilchen, und das Maul, sprich die Messergebnisse. Aber dazwischen befindet sich ein von Qualm umnebelter Körper. (Bild: X.-s. Ma)
Die fundamentale Unbestimmtheit quantenphysikalischer Phänomene verglich der amerikanische Physiker John Archibald Wheeler (1911–2008) bereits in den 1970er Jahren metaphorisch mit einem „großen, rauchenden Drachen": Man sieht den Schwanz, also die Quelle der Teilchen, und das Maul, sprich die Messergebnisse. Aber dazwischen befindet sich ein von Qualm umnebelter Körper. Und dieser Nebel lässt sich nicht lichten: Denn erst die Messung bestimmt das Phänomen, nicht umgekehrt. Um das zu beweisen, führte Wheeler ein berühmt gewordenes Gedankenexperiment durch. Beim „Delayed-choice"-Experiment wird die Wahl, ob die Teilchen- oder die Welleneigenschaft bestimmt wird, verzögert bzw. sogar während des Experiments verändert. Dadurch zeigt sich ein und dasselbe Phänomen, wie beispielsweise Licht, in ein und demselben Experiment einmal als Teilchen und einmal als Welle. Es kann also tatsächlich beides sein, abhängig von Zeitpunkt und Art der Messung.
Zahlreiche Quantenphysiker haben in den vergangenen Jahrzehnten versucht, Wheelers Gedankenexperiment zu verwirklichen, um damit den Welle-
Obwohl sich der Gedanke des Welle-
„Experimente dieser Art konfrontieren uns mit Grundsatzfragen der Quantenphysik", ergänzt Anton Zeilinger. „Doch auch für zukünftige innovative Anwendungen haben sie große Bedeutung, etwa in der Quantenkryptographie oder in der Weiterentwicklung des Quantencomputers." So lassen sich „Delayed-
U. Wien / DE