Wie Licht sich in Materie wandelt
Optische Nachweistechnik, um quantenoptische Kopplung bei Raumtemperatur zu messen.
Einer Arbeitsgruppe um Ulrike Woggon von der Technischen Universität Berlin ist es gelungen, die quantenoptische Kopplung von Licht und Materie an einem Halbleiterbauelement unter realistischen Betriebsbedingungen nachzuweisen. Das war bisher nur bei Atomen und tiefkalten Systemen möglich. Damit eröffnen sich neue Möglichkeiten für die ultraschnelle Datenverarbeitung in der Telekommunikation.
Abb.: Das Herzstück des Versuchsaufbaus im Femtosekundenlaserlabor: Apparatur zum Messen nichtlinear-optischer Effekte an Halbleiternanostrukturen. (Bild: TU Berlin, PR / U. Dahl)
„Das vom Menschen mittels Licht gesteuerte Erzeugen, Besetzen und Auslesen von Quantenzuständen ist ein Wunschtraum der modernen Quantenphysik“, sagt Woggon, Professorin am Institut für Optik und Atomare Physik der TU Berlin. „Angefangen hat alles mit der Vision, genau den Moment beobachten zu können, in dem ein Energiequant von Licht in Materie fließt“, so Woggon. Sie spricht über die quantenoptische Kopplung von Licht und Materie und dem Ziel, diese für die ultraschnelle Signalmodulation anzuwenden. Im Moment sind diese aufgrund der verwendeten Materialien limitiert auf den Bereich von Pikosekunden. Werden optische Daten noch dichter gepackt, besteht die Gefahr, dass die darin kodierte Information verfälscht wird oder sogar verloren geht. Signale, die über lange Strecken durch Glasfaserkabel wandern, muss man zudem verstärken.
„In unserem Experiment wird ein ultrakurzer Laserpuls durch einen Halbleiterverstärker geschickt, um danach die Änderungen in seiner Phase und Feldamplitude auszuwerten, alles mit einer Zeitauflösung von einer Zehntausendstel Pikosekunde“, erklärt Mirco Kolarczik, der Erstautor der Studie. Das Halbleiterbauelement besteht aus einer speziell entwickelten Nanostruktur, in der sich die Licht-Materie-Kopplung mittels elektrischen Stroms schalten lässt.
Im „Zentrum für NanoPhotonik“ der TU Berlin werden entsprechende nanoskalige Halbleitersysteme in Form von „künstlichen Atom“-Pendants designed und hergestellt. Sie weisen wesentliche Eigenschaften rein atomarer Systeme, wie zum Beispiel diskrete Energiezustände und optische Übergänge im nahen infraroten und sichtbaren Spektralbereich auf. „Wichtig für unseren Versuch sind dabei Halbleiternanostrukturen, deren Größe in allen drei Raumrichtungen nur wenige Nanometer beträgt und die wir als Quantenpunkte bezeichnen“, erläutert Forscherin Nina Owschimikow. „Wie in Atomen sind in Halbleiterquantenpunkten die Zustände diskret und gehorchen den fundamentalen Gesetzen der Quantenmechanik.“
Festkörperbasierte Halbleitersysteme zeigen jedoch unter realen Umweltbedingungen innerhalb eines Zeitbereiches von 10 bis 100 Femtosekunden einen schnellen Verlust der Phaseninformation in den Signalen – die sogenannte Quantendekohärenz – verursacht durch die Wechselwirkung, zum Beispiel mit den sie umgebenden Ladungen. Jenseits dieses Zeitfensters bleibt die Quantennatur der elementaren Prozesse dem Beobachter verborgen.
Das Phänomen der schnellen Dekohärenz bei nanostrukturierten Halbeitersystemen ist seit langem bekannt, und man ging bisher davon aus, dass nur bei sehr niedrigen Temperaturen mit Heliumkühlung und unter Laborbedingungen Quantenkohärenz messbar wäre – und damit also für den Alltagsgebrauch in der Datenübertragung unbrauchbar. Durch die Entwicklung einer mit dem Begriff „FROSCH“ abgekürzten ultraschnellen, hochempfindlichen, optischen Nachweistechnik ist es nun dem Forscherteam gelungen, sehr präzise einen durch das Bauelement propagierenden Lichtpuls zu vermessen.
„FROSCH“ steht für „Frequency-Resolved-Optical-Shortpulse-Characterization-by-Heterodyning”. In enger Zusammenarbeit mit theoretischen Physikern aus der Gruppe von Kathy Lüdge und Eckehard Schöll, die die Effekte quantenkohärenter Wechselwirkung auf den Lichtpuls in einem umfangreichen mikroskopischen Modell berechneten, konnten die Forscher die Robustheit der Quantenkohärenz in Quantenpunktbauelementen auch bei Raumtemperatur und unter realen Betriebsbedingungen nachgeweisen.
Sie analysierten, wie Femtosekunden-Laserpulse ihre charakteristische Form verändern, wenn diese durch einen quantenpunktbasierten Halbleiter wandern. Diese halbleiter-basierten Verstärker werden in der Arbeitsgruppe von Dieter Bimberg am „Zentrum für NanoPhotonik“ entworfen und erforscht. Simulationen der Experimente untermauerten die experimentellen Daten und ermöglichten ein tiefes Verständnis der auftretenden physikalischen Effekte.
„Unser System ist in der Lage, die Entwicklung der gesamten Amplituden- und Phaseninformation zu lesen, die der Quantenzustand innerhalb weniger Femtosekunden unter Raumtemperaturbedingungen in den Puls schreibt, und damit die quantenkohärente Licht-Materie-Kopplung nachzuweisen“, so Ulrike Woggon. „Basierend auf dieser Grundlagenforschung sollte es später möglich sein, bei der Datenübertragung wesentlich mehr Informationen in einen Puls zu kodieren als gegenwärtig in der optischen Kommunikation und Informationsverarbeitung erreichbar ist.“
TU Berlin / PH