Xenon muss draußen bleiben
Einlagerung von Edelgasen im Gestein: erdgeschichtliche Erklärung für den Häufigkeitsunterschied.
Weshalb kommen die Edelgase Argon und Xenon auf der Erde in so ungleichen Mengen vor? Während Argon, nach Stickstoff und Sauerstoff, das dritthäufigste Element in der Lufthülle der Erde ist, finden sich darin nur sehr geringe Spuren von Xenon. Dies ist angesichts der auf der Erde gefundenen Chondriten umso rätselhafter. Diese Meteoriten, die wie die Erde vor rund 4,5 Milliarden Jahren entstanden sind und als steinerne Zeugen aus der Frühzeit des Sonnensystems gelten, weisen einen erheblich höheren Xenongehalt auf.
Eine Lösung dieses in der Forschung seit langem diskutierten Rätsels haben jetzt Hans Keppler und Svyatoslav Shcheka am Bayerischen Geoinstitut entwickelt. Ausgangspunkt der Bayreuther Forschungsarbeiten war die Frage, ob Edelgase in größeren Mengen im unteren Erdmantel gebunden sein könnten. Der untere Erdmantel befindet sich in einer Tiefe zwischen 660 und 2900 Kilometer, also direkt oberhalb des Erdkerns. Dieser Bereich besteht vorwiegend aus Magnesiumsilikat-Perowskit, einem Mineral mit ungewöhnlicher Struktur, das mehr als die Hälfte der Erdmasse ausmacht. Eigentlich sollten Edelgase keine chemischen Bindungen eingehen und daher auch nicht in der Kristallstruktur von Mineralen vorkommen. Aufgrund der besonderen Eigenschaften von Magnesiumsilikat-Perowskit vermuteten Shcheka und Keppler jedoch, dass sich dieses Mineral anders verhalten könnte.
Sie simulierten deshalb Druck- und Temperaturverhältnisse des unteren Erdmantels in einer Hochleistungspresse – der größten in Europa – und erzeugten dort einen Druck von 250.000 Atmosphären und eine Temperatur von weit mehr als 1600 Grad Celsius; dabei brachten sie Magnesiumsilikat-Perowskit mit verschiedenen Edelgasen in Kontakt.
Viele dieser Experimente endeten in heftigen Explosionen. Eine Handvoll von erfolgreichen Experimenten zeigten jedoch ein sehr überraschendes Ergebnis. Der Magnesiumsilikat-Perowskit hat unter dem extremen Hochdruck keine Schwierigkeiten, Atome des vergleichsweise leichten Edelgases Argon einzulagern. Sobald es aus der Hochleistungspresse 'befreit' wird, macht Argon rund ein Prozent seines Gewichts aus. Auch Krypton, ein weiteres Edelgas, ist mit einem ungefähr gleichen Anteil darin eingelagert. Ganz anders jedoch verhält es sich mit Xenon: Es ist nur zu 0,03 Prozent in dem unter Hochdruck angereicherten Mineral enthalten.
Die Ursache dafür vermuten die Bayreuther Forscher in der Größe der Atome: Argon-Atome haben eine fast ideale Größe, um Sauerstoff-Fehlstellen im Magnesiumsilikat-Perowskit zu besetzen. Xenon-Atome hingegen sind wahrscheinlich schon zu groß, um sich in die winzigen Freiräume des Minerals hineinpressen zu lassen.
Diese Forschungsergebnisse bieten nun den Schlüssel, um die rätselhafte Xenon-Lücke in der Lufthülle der Erde zu erklären. Keppler und Shcheka knüpfen dabei an Erkenntnisse zur frühesten Erdgeschichte an, die in der Forschung bereits als gesichert gelten: Die noch junge Erde enthielt einen riesigen Magmaozean, in dem durch Kristallisationsprozesse große Mengen an Magnesiumsilikat-Perowskit entstanden. Darin lagerten sich, wie die Simulationsexperimente gezeigt haben, unter extrem hohen Drücken vergleichsweise große Mengen an Argon und Krypton ein. Xenon jedoch musste draußen bleiben.
Der mit Edelgasen angereicherte Magnesiumsilikat-Perowskit bildete, als sich die Erde weiter abkühlte, den Hauptbestandteil des unteren Erdmantels. Zugleich verlor die junge Erde durch massive Meteoreinschläge die atmosphärische Hülle, von der sie zunächst noch umgeben war. Erst im weiteren Verlauf der Erdgeschichte entwickelte sich eine neue Erdatmosphäre. Dabei strömten große Mengen von Gasen aus dem Erdinneren nach oben – darunter auch das Argon, das infolge von Umwälzungsprozessen im Erdmantel an die Oberfläche gelangte. Doch nur geringe Spuren von Xenon konnten in die neue Lufthülle entweichen, denn mehr war im Erdinneren nicht vorhanden. Die Zusammensetzung der heutigen Atemluft enthält also immer noch Spuren der Prozesse, die vor 4,5 Milliarden Jahren abliefen, als die Erde vollständig geschmolzen war.
Diese Erkenntnis ist auch für die Erforschung des Mars von großer Relevanz. Denn auch die Oberfläche auf unserem äußeren Nachbarplaneten weist einen eigentümlichen Mangel an Xenon auf. Im Lichte der neuen Erkenntnisse ist diese Xenon-Lücke ein Indiz dafür, dass es in der Frühgeschichte des Mars einen ähnlichen Magmaozean und ähnliche Kristallisationsprozesse wie auf der Erde gegeben haben könnte.
U. Bayreuth / OD