XENONnT misst präzise – dank Technik aus Münster
Mit dem Dunkle-Materie-Detektor im Gran-Sasso-Massiv ist es gelungen, Messungen nahezu frei von radioaktiven Störsignalen durchzuführen.
Bei der Suche nach Dunkler Materie nutzt die XENON-Kollaboration einen der weltweit empfindlichsten Dunkle-Materie-Detektoren, XENONnT. Im Gran-Sasso-Labor des Nationalen Instituts für Kernphysik (INFN) in Italien wollen sie damit extrem seltene Teilchenwechselwirkungen nachweisen. Diese könnten Aufschluss über die Natur der Dunklen Materie geben. Das Problem ist jedoch: Winzige Mengen natürlicher Radioaktivität erzeugen Störsignale, die die schwachen Signale überdecken können.


Das XENONnT-Experiment hat einen großen Fortschritt erzielt, indem es eine der problematischsten Verunreinigungen deutlich reduziert hat: Radon, ein radioaktives Gas. Zum ersten Mal ist es dem Forschungsteam gelungen, die durch Radon verursachte Radioaktivität des Detektors auf ein Niveau zu bringen, das eine Milliarde Mal niedriger ist als die sehr geringe natürliche Radioaktivität des menschlichen Körpers. Die zugrunde liegende Technik für XENONnT stammt von einem Team um den Teilchenphysiker Christian Weinheimer von der Universität Münster.
XENONnT misst die Wechselwirkungen von hypothetisch vorhergesagten Dunkle-Materie-Teilchen mit Atomen des flüssigen Edelgases. Der Detektor mit seinen 8,5 Tonnen flüssigen Xenons wird bei rund minus 95 Grad Celsius tief unter der Erdoberfläche betrieben, um Störsignale möglichst auszuschließen. Die besondere Empfindlichkeit des Detektors beruht auf der außergewöhnlichen Reinheit des Xenons, die durch die besondere Konstruktion des Detektors und die Verwendung ultrareiner Materialien erreicht wird. Selbst Spuren von gelöstem Radon und dessen ebenfalls radioaktiven Zerfallsprodukten können jedoch Lichtblitze erzeugen, die den gesuchten Signalen gleichen. Da Radon als Produkt langlebiger Isotope aus der Entstehungszeit unseres Sonnensystems in so gut wie allen Materialien vorkommt, macht es einen erheblichen Teil der natürlichen Strahlenbelastung des Menschen aus.
Um die Menge an Radon noch weiter zu reduzieren, entwickelte das XENONnT-Team ein kryogenes Destillationssystem zur kontinuierlichen Reinigung des Xenons. Dieser Prozess entfernt gezielt Radon und reduziert seine Konzentration in Xenon um den Faktor 4 auf lediglich 430 Radon-Atome pro Tonne flüssigem Xenon, wie von der XENONnT-Gruppe vom MPI für Kernphysik in Heidelberg bestimmt wurde. Die durch Radon verursachten Störsignale sind damit etwa so selten wie die äußerst seltenen Störsignale durch die Neutrinos, die aus der Kernfusion im Innern der Sonne stammen und nicht abgeschirmt werden können. Dank der Radon-Entfernung können die Messungen quasi frei von Radioaktivität durchgeführt werden. „Die Technik ebnet den Weg für größere, noch empfindlichere Detektoren wie das geplante, zehnmal größere Flüssigxenon-Observatorium XLZD“, betont Weinheimer. „XENONnT bringt uns der Lösung des Rätsels um die Dunkle Materie einen Schritt näher.“ [U Münster / dre]
Weitere Informationen
- Originalveröffentlichung
E. Aprile, J. Aalbers, K. Abe, S. Ahmed Maouloud, L. Althueser, B. Andrieu, E. Angelino, D. Antón Martin, F. Arneodo, et al. (XENON Collaboration), Radon Removal in XENONnT down to the Solar Neutrino Level, Phys. Rev. X 15, 031079, 30. September 2025; DOI: 10.1103/zc1w-88p6 - XENON Dark Matter Project, xenonexperiment.org
- AG Kern-, Teilchen- und Astroteilchenphysik (Christian Weinheimer), Institut für Kernphysik, Universität Münster
Anbieter
Universität MünsterSchlossplatz 2
48149 Münster
Deutschland
Meist gelesen

Planeten halten Sonne im Zaum
HZDR-Fluiddynamik-Team führt vergleichsweise geringe solare Aktivität auf eine Synchronisation durch die Gezeitenwirkung der Planeten zurück.

James-Webb-Weltraumteleskop entdeckt seinen ersten Exoplaneten
TWA 7 b ist der leichteste Planet, der direkt abgebildet werden konnte, und ist eine wichtige Etappe hin zur Abbildung erdähnlicher Planeten.

Eine neue Sorte von Zeitkristallen entdeckt
Ein exotisches Quantenphänomen zeigt sich unter Bedingungen, unter denen man es eigentlich nicht erwartet hätte.

Neue Magnetanordnungen mit Permanentmagneten liefern starke und homogene Felder
Effiziente Alternativen zum klassischen Halbach-Design – mit Potenzial für vielfältige Anwendungen.

Weltweit erstes Single-Source-Photon-Counting-CT in der Strahlentherapie installiert
Anlage zählt jedes einzelne Röntgenphoton und liefert so detailliertere Bilder mit mehr anatomischen und funktionalen Informationen.











