Atomar und ultrakalt
Universität Stuttgart erhält zwei Großgeräte für die Quantencomputer-Forschung.
Die Quantenforschung der Universität Stuttgart erhält zwei neue Großgeräte, die richtungsweisende Innovationen im Bereich der Digitalisierung ermöglichen sollen. Hierfür hat das Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg Fördermittel in Höhe von 2,5 Millionen Euro aus der Aufbauhilfe „REACT-EU“ bewilligt, die der Bewältigung der wirtschaftlichen und sozialen Folgen der COVID-19 Pandemie dient. Gefördert werden ein weltweit einmaliges, atomar auflösendes Mikroskop am neuen Zentrum für Angewandte Quantentechnologien (ZAQuant) sowie ein Entmischungskryostat, mit dem die Mikrowelleneigenschaften supraleitender Materialien für den Einsatz in Quantencomputern untersucht werden können.
Das neuartige Ultratieftemperatur-Rasterkraftmikroskop mit Codenamen QC.AFM am ZAQuant wird den interdisziplinären Forscherteams des Kompetenznetzes „Quantentechnologie Baden Württemberg“ (QT.BW) modernste Infrastruktur zur Erprobung neuartiger Quantentechnologien zur Verfügung stellen. Das Mikroskop ist speziell auf die Erforschung von Qubit-Netzwerken ausgelegt, die mittels Selbstanordnung von Molekülen oder Nanomanipulation von Spinzentren in 2D-Materialien erzeugt werden können. Magnetische Moleküle und Spinzentren in 2D-Materialien sind natürliche, identische Quantensysteme, die günstig und in großer Menge hergestellt werden können. Ihr Potential für die Quantentechnologie ist bisher nur wenig erforscht, da ihre geringe Größe von weniger als zehn Nanometern sie für die meisten Messinstrumente unsichtbar macht.
Das QC.AFM wird mittels gepulster Mikrowellenanregung quantenkohärente Kontrolle einzelner Moleküle und Spinzentren mit atomarer räumlicher Präzision ermöglichen. Es wird erstmals die kurzreichweitige magnetische Austauschkraft zwischen Qubits und spinsensitiven Rasterkraftsonden nutzen, um einzelne Qubits in dichten Netzwerken und in isolierender Umgebung zu vermessen. „Mit dem QC.AFM werden Messungen von Quantenphänomenen in Netzwerken von Molekülen mit bisher unerreichter Präzision möglich“, freut sich Antragsteller Sebastian Loth vom Institut für Funktionelle Materie und Quantentechnologien der Universität Stuttgart. „Damit eröffnen sich neue Horizonte für die Quantennanowissenschaften und insbesondere für die Nutzung von molekularen Materialien für Quantensimulationen in großen Qubit-Netzwerken.“
Das zweite Großgerät, ein Entmischungskryostat, wird am 1. Physikalischen Institut der Universität Stuttgart stehen. Hierbei handelt es sich um eine Kühlapparatur, die eine Mischung der beiden Heliumisotope Helium-3 und Helium-4 nutzt, um extrem tiefe Temperaturen zu erzeugen. Diese liegen typischerweise weniger als 0,1 Grad vom absoluten Temperaturnullpunkt entfernt, bei Millikelvin-Temperaturen. Für den Betrieb supraleitender Quantencomputer sind derartig niedrige Temperaturen eine der Grundvoraussetzungen für nahezu verlustfreie Mikrowelleneigenschaften der eingesetzten Supraleiter.
Mit dem neuen Entmischungskryostaten sollen festkörperphysikalische Untersuchungen, wie sie am 1. Physikalischen Institut der Universität Stuttgart als Grundlagenforschung an unterschiedlichen supraleitenden Materialklassen durchgeführt werden, auf die konkrete technologische Anwendung in Quantencomputern erweitert werden. Hierbei sind insbesondere granulare oder stark ungeordnete Supraleiter mit großer kinetischer Induktivität, also geringer Dichte supraleitender Ladungsträger, von Interesse, deren Eigenschaften gezielt für die jeweilige Anwendung optimiert werden können. Antragsteller Marc Scheffler vom 1. Physikalischen Institut betont: „Der beantragte Entmischungskryostat soll anwendungsnahe Experimente ermöglichen, mit denen derartige supraleitende Materialien bezüglich ihrer Mikrowelleneigenschaften besser verstanden und für den Einsatz in Quantencomputern optimiert werden können.“
U. Stuttgart / DE