Atomare Defekte in Halbleitern genauer aufspüren
Neuer Messaufbau kombiniert die Röntgenabsorption mit Messungen der optischen Lumineszenz.
Moderne Solarzellen arbeiten mit Dünnschichten aus Halbleitern, die Sonnenlicht in elektrische Energie umwandeln. Der Schlüssel, um ihre Effizienz noch weiter zu steigern, liegt in der Zusammensetzung und Struktur des Materials. Dieses kann herstellungsbedingt Defekte aufweisen, die sich störend auswirken. Forschende von der Universität Leipzig haben jetzt einen Messplatz konzipiert und aufgebaut, mit dem sie Halbleitermaterialien auf atomarer Ebene noch besser auf solche Defekte hin untersuchen können. Die neue Messmöglichkeit kann auch bei der Erforschung von Materialien für andere Anwendungen nützen, beispielsweise LEDs oder in der Telekommunikation.
Am Synchrotron Petra III des Deutschen Elektronen-Synchrotrons in Hamburg steht ab Januar 2023 ein neuer Messaufbau der Nutzergemeinschaft zur Verfügung. Er ermöglicht, elektronische und strukturelle Eigenschaften von Halbleiter-Dünnschichten und anderen Materialien zu untersuchen – und zwar simultan und elementspezifisch. Dies gibt Aufschluss darüber, wie sich strukturelle Defekte auf die elektronischen Eigenschaften des Materials auswirken. Der Messaufbau ist Ergebnis des Forschungsprojekts „Identifizierung von Defekten durch elementspezifische Anregung optischer Lumineszenz“ unter der Leitung von Claudia S. Schnohr am Felix-Bloch-Institut für Festkörperphysik der Universität Leipzig.
„Defekte sind Störungen in der Struktur eines Materials, wenn zum Beispiel bestimmte Atome nicht dort im Kristallgitter sitzen, wo sie eigentlich sein sollten“, erläutert Schnohr. „Sie entstehen oft ungewollt bei der Herstellung der Proben. So kann es passieren, dass Fremdatome in die Probe kommen oder dass das Kristallgitter nicht perfekt wächst.“ Häufig gibt es theoretische Vorhersagen zur Natur dieser Defekte, „aber eine experimentelle Bestätigung dieser Vorhersagen ist oft schwierig“, so die Physikerin.
Der Messaufbau kombiniert zwei Methoden: die Röntgenabsorptionsspektroskopie (XAS) sowie die röntgenangeregte optische Lumineszenz (XEOL). Die Forschenden machen sich hierzu zwei Effekte zunutze, die simultan auftreten, wenn bestimmte Materialien mit hochbrillanter Röntgenstrahlung angeregt werden: Zum einen absorbiert die Probe einen Teil der Röntgenstrahlung. Dies führt dazu, dass das Material auch selbst wieder Röntgenstrahlung aussendet. Sowohl die von der Probe emittierte Strahlung als auch die nicht absorbierte Strahlung, die direkt durch die Probe hindurchgeht, werden gemessen. Daraus, wie stark das Material die Röntgenstrahlung bei verschiedenen Energien – also bei verschiedenen Wellenlängen – absorbiert, kann man Strukturinformationen über das Material ableiten, wie etwa den gegenseitigen Abstand von Atomen im Material.
„Das Besondere hierbei ist, dass man dies jeweils auf bestimmte chemische Elemente im Material anwenden kann, auch wenn mehrere Elemente denselben Gitterplatz in der Kristallstruktur besetzen, wie dies bei Dünnschichtsolarzellen oft gewünscht ist“, so Schnohr. „Anders als andere Charakterisierungsmethoden ist die XAS-Methode also element- und dadurch oft auch platzspezifisch“. Dies sei wichtig für die Untersuchung von strukturellen Defekten im Dünnschichtmaterial. Zum anderen beginnt das Material nach Anregung durch Röntgenstrahlung im sichtbaren oder nahe-ultravioletten Bereich auf spezifische Weise zu leuchten. „Diese Lumineszenz gibt Hinweise auf die elektronischen Eigenschaften des Materials“, sagt Schnohr. Hierzu hat das Team zusammen mit Edmund Welter und seinem Team vom Desy eine XEOL-Detektionseinheit aufgebaut, die simultan zur Messung der Röntgenabsorption die jeweilige Lumineszenz-Aktivität der Proben über einen Spektrographen analysiert. „Dort wird dieses Licht in die einzelnen Wellenlängen zerlegt. Verschiedene Defekte werden durch ihre Lumineszenz bei unterschiedlichen Wellenlängen sichtbar“, so Schnohr.
Durch die simultane Verbindung der beiden Methoden können die Wissenschaftler daher Informationen über Defekte in der Gitterstruktur mit elektronischen Eigenschaften dieser Defekte in Verbindung setzen. „Im besten Fall können wir sehen, welche strukturellen Ursachen bestimmte elektronische Defekte haben“, sagt Schnohr. Sind bei Dünnschichtsolarzellen oder auch LEDs Defekte nicht erwünscht, kann dies bei anderen Anwendungen ganz anders sein. Beispiele hierfür sind Leuchtstoffe oder bestimmte optische Materialien, die in einer bestimmten Farbe leuchten sollen. Hier seien gezielte Defekte im Material eine Möglichkeit, den gewünschten Effekt zu erreichen, erläutert sie.
U. Leipzig / JOL
Weitere Infos
- Originalveröffentlichung
S. Levcenko et al.: High-resolution XEOL spectroscopy setup at the X-ray absorption spectroscopy beamline P65 of PETRA III, J. Synchrotron Rad. 29, 1209 (2022); DOI: 10.1107/S1600577522007287 - Struktur und Eigenschaften komplexer Festkörper, Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig