Dynamik an der Küste
Neu entwickeltels System zum Salzwassermonitoring soll Aufschluss über die wichtige Übergangszone von Strand zu Meer geben.
An der dynamischen Nordseeküste vor Spiekeroog hat das Forschungsvorhaben DynaDeep mittels einer Bohrung das am Leibniz-Institut für angewandte Geophysik (LIAG) entwickelte Salzwassermonitoringsystem Samos direkt an der Hochwasserlinie am Oststrand eingebaut. Ziel des Projektes ist es, ein unterirdisches Messfeld zu installieren, um die Übergangszonen zwischen den Grundwasseraquiferen an Hochenergiestränden und dem Meer zu untersuchen. In diesen Zonen verändern biogeochemische Reaktionen die Grundwasserzusammensetzung, was die Stoffflüsse in Richtung Meer wesentlich beeinflusst. Bislang ist darüber global nur wenig bekannt. Weitere Messinstallationen sind bis Anfang Juni geplant.
Der Untergrund von Hochenergiestränden, also dem offenen Meer zugewandten Stränden, ist stetig in Bewegung. In ihm spielen sich vielfältige chemische, geologische und mikrobiologische Prozesse ab. Die Installation des unterirdischen Messfeldes ermöglicht es der Forschungsgruppe DynaDeep (The Dynamic Deep Subsurface of High-Energy Beaches) nun bald, diese dynamische Unterwelt, in der sich Salz- und Süßwasser vermischen, kontinuierlich zu überwachen. In der ersten Projektphase, die von der Deutschen Forschungsgemeinschaft mit rund fünf Millionen Euro gefördert wird und auf vier Jahre angelegt ist, konzentriert sich das Projekt auf den Standort Spiekeroog.
Hydrogeologin Gudrun Massmann, die am Institut für Biologie und Umweltwissenschaften (IBU) und am Institut für Chemie und Biologie des Meeres (ICBM) der Universität Oldenburg forscht und lehrt, ist Sprecherin des Forschungsvorhabens. Sie koordiniert mit dem Geophysiker und LIAG-Projektleiter Mike Müller-Petke den Einbau der Samos-Messstrecke. Weiter beteiligt sind mehrere Forscher des ICBM, des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung in Bremerhaven (AWI), des Max-Planck-Instituts für Marine Mikrobiologie (MPI-MM) in Bremen, der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) in Hannover sowie der Universität Kiel. Das Team wird von einem Netzwerk von Kooperationspartnern und lokalen Akteuren unterstützt, darunter die Nationalparkverwaltung Niedersächsisches Wattenmeer (NLPV), die Forschungsstelle Küste des Niedersächsischen Landesbetriebs für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN) und die Gemeinde Spiekeroog.
Bereits die Installation des Messfeldes und die auf Langzeit angelegten Messungen sind aufgrund der Zugänglichkeit zur Übergangszone und der Instabilität des Untergrunds herausfordernd. Über eine oberflächennahe Bohrung wurde die zwanzig Meter lange Samos-Elektrodenstrecke erstmalig direkt am Strand an der dynamischen Hochwasserlinie eingebaut. Sie komplettiert damit die kontinuierlichen Datenerhebungen durch das unterirdische Messfeld. Die Installation eines Messpfahls mit Wellenmesser, Kameras und einer Wetterstation erfolgte bereits vom Schiff aus durch die Forschungsstelle Küste des NLWKN. Zeitgleich mit der Samos-Installation werden drei Multilevel-Grundwassermessstellen eingebaut. Samos, das mittels elektrischer Leitfähigkeit den Untergrund abbildet, ist anders als andere geophysikalische Messsysteme in der Lage, die gesamte Salz-Süßwassergrenze vom Untergrund bis zur Oberfläche zu überwachen. Eine Echtzeit-Datenübertragung soll der Forschungsgruppe dann fortlaufend Einblicke in die dynamischen Prozesse geben. Die kontinuierlichen Datenerhebungen des unterirdischen Messfeldes werden durch regelmäßige Messungen von der Oberfläche ergänzt.
Die intensive interdisziplinäre Zusammenarbeit der beteiligten Wissenschaftler soll auf Basis der ersten Projektphase und im Rahmen der Grundlagenforschung auch global das Verständnis eines weitgehend unbekannten Lebensraums am Übergang zwischen Land und Meer entscheidend voranbringen. Hochenergiestrände machen weltweit einen großen Anteil aus. An den meisten dieser Standorte wurden in größerer Tiefe – vermutlich durch die schwierigen Bedingungen für das Arbeiten in solchen Systemen – jedoch bisher keine biogeochemischen und mikrobiologischen Daten erhoben. Der biogeochemische Reaktor im Untergrund von Hochenergiestränden ist daher bislang nur unzureichend verstanden, obwohl er global wahrscheinlich wesentlich die Stoffflüsse in Küstengewässern beeinflusst.
LIAG / DE