23.06.2023

Fusionplasmen berechenbar machen

Wladimir Zholobenko mit Otto-Hahn-Medaille aufgezeichnet.

Das Phänomen Turbulenz in Fusions­plasmen spielt eine entscheidende Rolle für die Entwicklung von Kernfusions­kraftwerken. Ohne Turbulenz ließe sich die Energie viel besser innerhalb des magnetisch gefangenen Plasmas einschließen. Andererseits ist Turbulenz hilfreich, etwa um Verunreinigungen aus dem Plasma zu spülen. Außerdem muss Wärmeenergie irgendwann aus dem Plasma entweichen. Gäbe es keinerlei Turbulenz, würde sie in einem schmalen räumlichen Bereich austreten. Die Belastung für das Wandmaterial wäre dort so groß, dass es schmelzen würde. Deshalb ist ein gewisses Maß an Turbulenz erwünscht – auch wenn es den Energieeinschluss verschlechtert. Erst Turbulenz ermöglicht es, Wärme kontrolliert und verteilt auf den hitze­beständigsten Teil der Wand abzuführen – den Divertor.

 

Abb.: Wladimir Zholobenko wird mit der Otto-Hahn-Medaille ausgezeichnet. (Bild:...
Abb.: Wladimir Zholobenko wird mit der Otto-Hahn-Medaille ausgezeichnet. (Bild: IPP / F. Fleschner)

Wie sich Turbulenz steuern und optimal einsetzen lässt, wird von Forschern weltweit untersucht. Wladimir Zholobenko ist es jetzt gelungen, dieses Turbulenz­verhalten mit Simulationen vorherzusagen. Dafür wurde er am 21. Juni 2023 auf der Jahres­versammlung der Max-Planck-Gesellschaft in Göttingen mit der Otto-Hahn-Medaille ausgezeichnet. Der Preis ist mit 7500 Euro dotiert.

Zholobenko nutzte den am IPP entwickelten Simulationscode Grillix, der Turbulenz speziell am Plasmarand berechnet. Innerhalb seiner Doktorarbeit im IPP-Bereich Tokamak­­theorie entwickelte er den Code zum ersten realistischen Turbulenz-Modell weiter, das auch die Wechselwirkung der geladenen Teilchen im Plasma mit dem Neutralgas berücksichtigt. Letzteres bildet sich außerhalb des Plasmas, vermischt sich aber in den Rand­schichten auch mit diesem. Mit dem verbesserten Code lässt sich nun die zeitliche und räumliche Ausbreitung von Turbulenz in Tokamaks mit Divertor verfolgen. Zholobenko passte sein Modell an für Fusions­anlagen mit der Größe und Bauart von ASDEX Upgrade in Garching. „Bei der Entwicklung habe ich meine Rechnungen ständig mit experimentellen Daten von ASDEX Upgrade verglichen und konnte den Code so kontinuierlich verbessern“, erklärt Zholobenko. „Jetzt ist er so realistisch, dass er zur Planung von Experimenten eingesetzt werden kann.“

Für dieses Ergebnis war ein enormer Rechen­aufwand erforderlich. Zholobenko setzte die leistungs­stärksten Hoch­leistungs­computer Europas ein – unter anderem die der Max Planck Computing and Data Facility (MPCDF) in Garching und von Marconi Fusion in Italien. „Um Turbulenz­­verläufe innerhalb von drei Milli­sekunden zu simulieren, waren diese Anlagen jeweils drei Monate beschäftigt“, sagt Zholobenko. Und auch dieser Zeitraum war überhaupt nur möglich, weil der Code kontinuierlich optimiert wurde.

Inzwischen arbeitet Zholobenko als wissenschaftlicher Mitarbeiter am IPP und verfolgt als Mitglied des Grillix-Teams das nächste Ziel: Er will die Performance und Genauigkeit von Grillix soweit verbessern, dass sich damit auch Turbulenz in ITER realistisch vorhersagen lässt. Der Experimental­reaktor wird derzeit im südfranzösischen Cadarache gebaut und soll zehn Mal so viel Fusionsleistung erzeugen, wie an Wärme­leistung zugeführt werden muss. Er ist damit ein wichtiger Meilenstein auf dem Weg zu einem kommerziellen Fusions­kraftwerk. Dafür wird ITER mit einem Plasmavolumen arbeiten, das mehr als sechzigmal so groß ist wie das von ASDEX Upgrade. „Obwohl wir Grillix seit dem Abschluss meiner Doktorarbeit weiter verbessert haben, würde es derzeit noch ein Jahr dauern, um einzelne Ergebnisse für ITER zu berechnen“, erklärt Zholobenko. „Außerdem ist zu erwarten, dass sich bei einem solchen Größensprung auch die physikalischen Phänomene verändern.“

Deshalb gibt es mehrere Zwischen­schritte: Grillix wird zunächst weiter an ASDEX Upgrade für Szenarien optimiert, die am besten für einen Reaktor geeignet zu sein scheinen. Der Code wird außerdem auch an dem Tokamak JET in Groß­britannien getestet. Dieser verfügt nur über das sechsfache Plasma­volumen von ASDEX Upgrade. Aus den Experimenten der vergangenen fast vier Jahrzehnte an JET existieren umfangreiche Daten, die sich mit Rechnungen vergleichen lassen. Gleichzeitig schreibt das Grillix-Team große Teile des Codes neu, um die Performance zu verbessern: „Wir müssen noch drei- bis fünfmal schneller werden, um auf akzeptable Rechen­zeiten auch für ITER zu kommen.“

IPP / DE

Weitere Infos

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen