18.01.2024

Höhere Messgenauigkeit öffnet neues Fenster in die Quantenwelt

Winzige Temperaturdifferenzen beim thermischen Hall-Effekt lassen sich erstmals genau erfassen.

Ein Team am Helmholtz-Zentrum Berlin für Materialien und Energie hat ein neues Messverfahren entwickelt, um winzige Temperaturdifferenzen im Bereich von hundert Mikrokelvin beim thermischen Hall-Effekt erstmals genau zu erfassen. Diese Temperaturdifferenzen konnten aufgrund von thermischem Rauschen bislang nicht quantitativ vermessen werden. Am Beispiel von Terbiumtitanat, dessen Eigenschaften gut bekannt sind, zeigte das Team, dass die Messmethode höchst verlässliche Ergebnisse liefert. Der thermische Hall-Effekt gibt Auskunft über kohärente Vielteilchenzustände in Quantenmaterialien und nutzt dazu ihre Wechselwirkung mit Phononen.

Abb.: Probenstab.
Abb.: Für den neuen Probenstab mit Probenhalter hat das HZB-Team mehrere Innovationen entwickelt, die das Rauschen unterdrücken und Temperaturmessungen mit extremer Präzision ermöglichen.
Quelle: D. Kojda, HZB

Natürlich gelten die Gesetze der Quantenphysik in allen Materialien. Doch in Quantenmaterialien führen diese Gesetze zu besonders ungewöhnlichen Eigenschaften. So lassen sich zum Beispiel durch Magnetfelder oder Veränderungen der Temperatur Anregungen, kollektive Zustände oder Quasiteilchen hervorrufen, die mit Phasenübergängen in exotische Zustände einhergehen. Das lässt sich vielfältig nutzen, sofern man es verstehen, kontrollieren und steuern kann. Zum Beispiel für künftige Informationstechnologien, die Daten mit nur minimalem Energiebedarf speichern oder verarbeiten können.

Der thermische Hall-Effekt spielt eine Schlüsselrolle, um exotische Zustände in kondensierter Materie zu identifizieren. Dabei handelt es sich um eine winzige Wärmedifferenz, die quer zu einem angelegten Temperaturgradienten entsteht, sobald ein senkrechtes Magnetfeld die Probe durchdringt. Insbesondere ermöglicht die quantitative Messung des thermischen Hall-Effekt es, die exotischen Anregungen von konventionellem Verhalten zu trennen.

Der thermische Hall-Effekt wird in einer Vielzahl von Materialien beobachtet, darunter Spin-Flüssigkeiten, Spin-Eis, Mutterphasen von Hoch-Temperatur-Supraleitern und Materialien mit stark polaren Eigenschaften. Allerdings sind die Wärmedifferenzen, die senkrecht zum Temperaturgradienten in der Probe entstehen, extrem winzig: Für typische millimetergroße Proben liegen sie im Bereich von Mikrokelvin bis Millikelvin. Bisher war es schwierig, diese Wärmedifferenzen experimentell zu erfassen, weil die eingetragene Wärme durch Mess-Elektronik und Sensoren den Effekt überdeckten.

Das Team um Klaus Habicht hat jetzt Pionierarbeit geleistet. Gemeinsam mit den Spezialisten aus der HZB-Probenumgebung haben sie einen neuartigen Probenstab mit modularem Aufbau entwickelt, der in verschiedene Kryomagnete eingesetzt werden kann. Der Probenkopf nimmt die Probe auf und misst mit kapazitiver Thermometrie den thermischen Halleffekt. Dabei wird die Temperaturabhängigkeit der Kapazität von eigens zu diesem Zweck angefertigten Miniaturkondensatoren genutzt.

Mit dem Aufbau gelang es den Experten mit mehreren Innovationen, die Wärmeübertragung durch Sensoren und Elektronik deutlich zu verringern und Störsignale und Rauschen zu dämpfen. Um das Messverfahren zu validieren, untersuchten sie eine Probe aus Terbiumtitanat, dessen Wärmeleitfähigkeit in unterschiedlichen Kristallrichtungen unter Magnetfeld gut bekannt ist. Die Messdaten stimmten ausgezeichnet mit der Literatur überein.

„Die Fähigkeit, Temperaturdifferenzen im sub-Millikelvin-Bereich aufzulösen, fasziniert mich sehr und ist ein Schlüssel, um Quantenmaterialien eingehender zu untersuchen“, sagt Danny Kojda vom HZB. „Wir haben nun gemeinsam ein durchdachtes Experimentdesign, klare Messprotokolle und präzise Analyseverfahren entwickelt, die hochauflösende und reproduzierbare Messungen erlauben“.

„Unsere Arbeit liefert auch Hinweise zur weiteren Verbesserung der Auflösung in zukünftigen Instrumenten, die auf tiefe Probentemperaturen abzielen sollen“, ergänzt Habicht. „Ich hoffe, dass der experimentelle Aufbau fest in die HZB-Infrastruktur integriert wird und die vorgeschlagenen Upgrades umgesetzt werden.“

Die Gruppe um Habicht wird nun Messungen des thermischen Hall-Effekts dazu nutzen, um topologische Eigenschaften von Gitterschwingungen in Quantenmaterialien zu untersuchen. „Die mikroskopischen Mechanismen und die Physik der Streuprozesse für den thermischen Hall-Effekt in Ionenkristallen sind bei weitem nicht abschließend verstanden. Die spannende Frage lautet: Warum werden elektrisch neutrale Quasiteilchen in nicht-magnetischen Isolatoren dennoch im Magnetfeld abgelenkt?“, so Habicht. Mit dem neuen Instrument hat das Team nun die Voraussetzung geschaffen, um diese Frage aufzuklären.

HZB / RK

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen