23.07.2024

Ein Gigant mit Keramik-Herz

NMR-Spektrometer mit Hochtemperatursupraleitern aus Keramik für die molekulare Pharmakologie.

Das neue NMR-Spektrometer am Leibniz-Forschungsinstitut für molekulare Pharmakologie ist etwas Besonderes: Erstmalig kommen in seinem Inneren Hochtemperatursupraleiter zu Einsatz. „Hochtemperatur heißt, das Material entwickelt bereits bei einer Temperatur von über minus 200 Grad Celsius supraleitende Eigenschaften“, erklärt Peter Schmieder, Leiter der NMR-Technologieplattform am FMP. Das ermöglicht hochpräzise Analysen immer komplexerer biologischer Systeme, etwa Proteinstrukturen. „Die Güte der Messung, das heißt ihre Empfindlichkeit und die Auflösung in den Spektren, hängt ab von der Feldstärke des Magnets – je stärker, umso besser“, so Schmieder.

Abb.: Die Forscher vor dem neuen 1,2 GHz NMR-Spektrometer.
Abb.: Die Forscher vor dem neuen 1,2 GHz NMR-Spektrometer. Von links nach rechts: Peter Schmieder, Han Sun, Adam Lange, Sigrid Milles und Hartmut Oschkinat.
Quelle: S. Oßwald, FMP

Der im neuen Gerät verbaute Magnet erreicht mit 28 Tesla das aktuell größtmögliche stabile Magnetfeld, was einer Resonanzfrequenz von 1,2 Gigahertz und damit einer zwanzig Prozent höheren Resonanzfrequenz als jener entspricht, die mit konventionellen Supraleitern erreichbar wäre. Das liegt am verwendeten Material: Der innerste Teil der Spule wurde mit keramischen Supraleitern gefertigt, eine knifflige Aufgabe, denn das Material ist brüchiger als Metall. An dieser Entwicklung knobelte der Hersteller mehr als ein Jahrzehnt. Die Arbeitstemperatur der neuen Supraleiter liegt allerdings weiterhin bei -271 °C, damit das Material das starke Magnetfeld trägt. Das neue NMR-Gerät auf dem Campus Buch ist eines von nur zehn, die bislang weltweit in Betrieb genommen wurden.

Das 28-Tesla-Feld ist eine Million Mal stärker ist als das der Erde. Da die Magnete in den NMR-Geräten abgeschirmt sind und die erzeugten Magnetfelder statisch und nicht fluktuierend, machen sie bei gesunden Menschen ohne Herzschrittmacher keine Probleme. Mobiltelefone und Uhren lassen Schmieder und sein Team allerdings vor der Tür, bevor sie einen der Räume mit den NMR-Spektrometern betreten.

Der Aufbau des neuen NMR-Geräts ist inzwischen abgeschlossen. Dabei wurde der acht Tonnen schwere Magnet auf einem Druckluftkissen ins Haus geschoben und senkrecht aufgestellt. Nach Fertigstellung des Aufbaus musste er abgekühlt werden. „Das allein hat drei Wochen gedauert. Man macht das sehr langsam, damit keine mechanischen Spannungen in der Spule entstehen“, berichtet Schmieder. Wenn die Spule eine Temperatur von zwei Kelvin erreicht hat, wird der Magnet aufgeladen.

Das ist der knifflige Teil: Geht dabei etwas schief, verliert die Spule die Supraleitung, das Kühlmittel Helium erwärmt sich und verdampft in die Atmosphäre, und der gesamte – teure und langwierige – Prozess muss neu gestartet werden. „Es lief aber alles nach Plan, der Magnet ist auf Feld, hat also sein Feld von 28 Tesla erreicht“, freut sich Schmieder. Danach wurde die Hardware getestet und geprüft, ob die Spezifikationen des Geräts hinsichtlich Elektronik und Messvorrichtungen erreicht werden.

Seit Ende Mai läuft der Testbetrieb mit ersten wissenschaftlichen Messungen. „Das Hauptproblem bei der Protein-NMR-Spektroskopie ist, dass man viele Signale erhält, die sich nur wenig voneinander unterscheiden. Deswegen ist eine so hohe Auflösung so wichtig“, sagt Schmieder. Außerdem eignet sich diese Technologie besonders gut, um die Beweglichkeit von Eiweißen zu bestimmen. Der Versuchsaufbau für Messungen in Lösungen oder in Festkörpern ist unterschiedlich, weswegen die alten NMR-Geräte des FMP für jeweils eine Messweise dienen – aktuell fünf für Festkörper- und fünf für Messungen in Lösungen.

Das neue Gerät hingegen soll für beide Messarten eingesetzt werden. So ist die Möglichkeit gegeben, möglichst vielfältige Untersuchungen mit dem neuen State-of-the-Art-Magneten durchzuführen. Hauptnutzer des neuen Geräts werden die am FMP arbeitenden NMR-Gruppen sein: In der Arbeitsgruppe von Adam Lange werden mittels Festkörper-NMR die Struktur und Dynamik pharmakologisch relevanter Membranproteine untersucht, die Gruppe von Sigrid Milles verwendet Lösungs-NMR, um intrinsisch ungefaltete Proteine zu charakterisieren. Die Gruppe von Han Sun verwendet anisotropische NMR, um die Struktur und Stereochemie von kleinen Molekülen und Peptiden zu bestimmen, während in der Gruppe von Hartmut Oschkinat Biofilmproteine mit Lösungs- und Festkörper-NMR charakterisiert werden.

FMP / RK

Weitere Infos

  • NMR-Facility (P. Schmieder), Leibniz-Forschungsinstitut für molekulare Pharmakologie, Berlin




EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen