Korrosionsschutz für Meteoriten
Neues Beschichtungsverfahren dient dem Erhalt besonders korrosionsgefährdeter Fundstücke.
Im Rahmen eines geförderten Projektes entwickelt Innovent reversible Schutzschichten, basierend auf nachwachsenden Rohstoffen, für metallische Kulturgüter. In diesem Zusammenhang wurde deren Eignung für die Konservierung von Eisenmeteoriten untersucht. Damit lassen sich Korrosionserscheinungen infolge von Lagerung und Zurschaustellung an den Fundstücken vermeiden, ohne deren Oberfläche und Optik zu verändern. Bei Bedarf können diese Schutzschichten wieder rückstandsfrei und ohne Einfluss auf die Oberflächen der Objekte entfernt werden.
Eisenmeteoriten neigen unter Einfluss von Feuchtigkeit sehr stark zur Korrosion. Durch die starke thermische Belastung beim Atmosphäreneintritt weisen sie Mikrorisse auf, an deren Kanten die Korrosion besonders stark voranschreitet. Durch die größere räumliche Ausdehnung der Korrosionsprodukte in den Rissen führt dies oft zum Zerfall und gegebenenfalls zum Verlust der Fundstücke. Viele Meteoriten weisen charakteristische Muster (Widmannstättensche Strukturen) auf, welche sich über lange Zeiträume bilden und anhand derer die Fundstücke identifiziert werden. Hierfür und für weitere Analysen, aber auch zur Ausstellung, werden die Fundstücke in der Regel zerteilt, wodurch die freigelegten blanken Metalloberflächen dem korrosiven Angriff ausgesetzt sind. Eine Versiegelung zum Schutz vor Korrosionserscheinungen sollte, gerade für museale Ausstellungsstücke, das äußere Erscheinungsbild nicht verändern und auch keinen mechanischen und chemischen Einfluss auf die Oberfläche des Objektes ausüben. Zudem ist eine rückstandslose Entfernbarkeit wünschenswert.
Hierfür bietet sich ein Beschichtungsverfahren an, welches von Innovent bereits an archäologischen Fundstücken erprobt wurde. Bei den hierbei untersuchten Fundstücken aus Eisen ebenso wie bei den Meteoriten spielt die Erhaltung des kultur- beziehungsweise naturhistorischen Wertes die entscheidende Rolle.
Bei dem Beschichtungsmaterial handelt es sich um eine thermoplastische Polysaccharid-Ester-Verbindung, welche sich durch eine hohe Transparenz auszeichnet. Analog einer klassischen Pulverbeschichtung wird das fein gemahlene Material elektrostatisch geladen auf den metallischen Probekörper aufgetragen und anschließend durch Aufschmelzen zu einer umhüllenden Schicht verbunden.
Bei der Synthese der Esterverbindung aus biobasierten nachhaltigen Rohstoffen kann der Schmelzpunkt in einem Bereich von 50 Grad Celsius bis etwa 200 Grad Celsius eingestellt werden, so dass auch temperaturempfindliche Substrate gut damit behandelt werden können. Da das Material während des Auftragsprozesses nicht quervernetzt, kann es durch Schmelzen mit sanftem mechanischem Abtrag oder mittels Lösemittel wieder von der Oberfläche entfernt werden. Die Polysaccharidester sind wasserabweisend und frei von Weichmachern und Lösungsmitteln. Durch Einstellung der Viskosität und des Spreitverhaltens der Schmelze lassen sich unterschiedliche Glanzgrade erzeugen und damit der ursprüngliche optische Eindruck erhalten.
„Für derartige Versuche sollte man es mit Bruchstücken des Eisenmeteoriten aus dem Campo del Cielo Kraterfeld in Argentinien versuchen, da dieser aufgrund seiner Rissigkeit die Ausbreitung von Rost gut erkennen lässt“, empfahl Benno Baumgarten, stellvertretender Direktor des Naturkundemuseums Südtirol, der bei den Versuchen beratend tätig war. Das rund 42 Gramm schwere Fragment des Meteoriten wurde trocken zerteilt, um eine Test- und eine Referenzprobe zu erhalten. Bei dem Material handelt es sich um eine Eisen-Nickel-Legierung, welche in normaler Raumluft schnell zu oxidieren beginnt und daher entweder sehr trocken gelagert oder gesondert geschützt werden muss.
Zur Überprüfung der Beständigkeit der Beschichtung und ihrer Schutzwirkung wurde eine der beiden Hälften mit der Pulverschicht versehen und zusammen mit der unbehandelten Hälfte für fünf Tage in einer feuchten Atmosphäre gelagert. Nach dieser Zeit ist bereits mit bloßem Auge und ganz besonders mikroskopisch ein deutlicher Unterschied zwischen den beiden Probestücken zu erkennen. Nicht nur auf den Außenflächen, sondern vor allem den frischen Schnittflächen ist die Wirkung des Schutzmantels sehr gut erkennbar.
Insbesondere an den Mikrorissen, die sich aufgrund der thermischen Belastung beim Atmosphäreneintritt bis in die inneren Bereiche des Meteoritenkörpers bilden, sind die Korrosionserscheinungen besonders ausgeprägt. An diesen Stellen besteht noch Optimierungsbedarf bei der Beschichtung hinsichtlich der Abdeckung. Zusätzlich konnten Röntgenfluoreszenzanalysen der korrodierten Stellen (besonders der Ausblühungen an diesen Rissen) Anwesenheit von Chlor, belegen. Dieser Umstand lässt vermuten, dass während der zirka 5000 Jahre langen Lagerung im Erdboden salzhaltige Verbindungen in die Mikrorisse eingedrungen sein könnten und daher, durch Bildung von Lösungen in feuchter Atmosphäre, die Korrosion im Umfeld der Risse beschleunigen. Die korrosive Wirkung von Salzwasser ist bekannt. Dennoch ist die Korrosion an den vollständig ungeschützten Rissen deutlich stärker. Dieses Resultat ebnet den Weg, mit einer weiteren Optimierung des Auftragsverfahrens, als auch des Beschichtungsmaterials selbst, zu einer vollständigen Schutzwirkung zu kommen.
Innovent / DE
Weitere Infos