15.09.2021 • FestkörperphysikLaser

Laserschleifen erzeugen ultraschnelle elektrische Ströme in Festkörpern

Neue Erkenntnisse für die Entwicklung ultraschneller optoelektronischer Bauelemente.

Theoretiker des MPI für Struktur und Dynamik der Materie sagen voraus, dass eine ungewöhn­liche Laser­quelle hoch­gradig kontrol­lier­bare elektrische Ströme in Fest­körpern aller Art erzeugt. Die Studie des Teams liefert neue Erkennt­nisse für die Entwick­lung ultra­schneller opto­elek­tro­nischer Bau­elemente, für effi­zientere Photo­voltaik und für die Unter­suchung des Verhaltens von Elektronen in Fest­körpern.

Abb.: Ein bichroma­tisches Laser­feld regt die Elek­tronen in einem...
Abb.: Ein bichroma­tisches Laser­feld regt die Elek­tronen in einem Fest­körper an und pro­du­ziert dort einen Photo­strom im rechten Winkel zum Laser. (Bild: J. Harms, MPSD)

Die Forscher konzentrierten sich auf einen intensiven bichro­ma­tischen Laser­strahl, der nur aus Photonen mit niedriger Energie besteht, aber aus zwei zirkular polari­sierten Frequenzen. Die Polari­sie­rung des elektro­mag­ne­tischen Felds dieses Strahls zeichnet eine spezi­fische Form in Raum und Zeit: Die Kombi­nation der beiden Farben führt zu einer Doppel­schleifen­bewegung, die die Elektronen im Fest­körper in verschiedene Richtungen treibt. Gemeinsam mit dem intensiven Strahl bewirkt dieses Doppel­schleifen-Laser­licht einen radikalen Effekt: Viele Photonen werden gleich­zeitig absorbiert und regen die Elektronen an, so dass ein Strom entsteht.

„Normalerweise werden nieder­energe­tische Photonen nicht vom Material absorbiert", sagt Ofer Neufeld vom MPSD. „Wir umgehen das, indem wir einen sehr intensiven Laser­strahl mit vielen Photonen nutzen, der es mehreren Photonen ermöglicht, sich zu kombi­nieren und gemeinsam absorbiert zu werden, um so einen Photostrom zu erzeugen.“ Darüber hinaus erzeugen die nieder­energe­tischen Photonen nur eine geringe Erwärmung des Materials, so dass es sich um einen hoch­effi­zienten Umwand­lungs­prozess handelt.

Interessanterweise tritt der Photo­strom immer in einem rechten Winkel zum Laser auf, so dass seine Richtung und Amplitude sehr gut steuerbar sind. Das funktio­niert allerdings nur bis zu einem bestimmten Punkt. „Bei sehr intensiven Strahl­leistungen kommt es zu einem spontanen Symmetrie­bruch und die Richtung des Stroms ist nicht mehr vorher­sagbar", sagt Neufeld. „Dann entstehen jedoch interes­sante Effekte wie indu­zierte Wechsel­wirkungen zwischen Elektronen und die Empfind­lich­keit gegen­über der Träger­phase der Photonen. Wir hoffen, dass wir durch die Messung der erzeugten Ströme auch neue Erkennt­nisse über die grund­legenden Prozesse gewinnen können, die auf Zeit­skalen von weniger als einer Femto­sekunde ablaufen.“

Mit diesem neuen Ansatz lassen sich laut den Forschern Photo­ströme in einem breiten Spektrum von zwei- und drei­dimen­sio­nalen Materialien erzeugen, von Isolatoren mit großen Band­lücken wie Diamant und Silizium bis hin zu Graphen und anderen Halb­metallen. Lang­fristig könnten die Erkennt­nisse des Teams zur Entwick­lung super­schneller licht­ge­steuerter elek­tro­nischer Schalter beitragen – dem Bereich der Peta­hertz-Elektronik, wo elektronische Bewegungen sowohl zeitlich als auch räumlich gesteuert werden müssen.

MPSD / RK

Weitere Infos

 

 

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Anbieter des Monats

Quantum Design GmbH

Quantum Design GmbH

Forschung lebt von Präzision. Seit über 40 Jahren steht Quantum Design für innovative Messtechnik auf höchstem Niveau – entwickelt in Kalifornien, betreut weltweit. Unsere Systeme sind der Goldstandard in der Materialcharakterisierung und ermöglichen tiefe Einblicke in die magnetischen, thermischen und optischen Eigenschaften von neuen Materialien.

Meist gelesen

Themen