08.02.2010

Millionenfache Verstärkung des Leuchtens an molekularen Stufen

Nahfeldmikroskop liefert höchstaufgelöste optische Bilder eines organischen Halbleiters.


Nahfeldmikroskop liefert höchstaufgelöste optische Bilder eines organischen Halbleiters.

Die Arbeitsgruppe um Alfred Meixner und Dai Zhang vom Institut für Physikalische und Theoretische Chemie der Universität Tübingen hat ein Nahfeldmikroskop entwickelt, das die optischen Eigenschaften einer organischen Halbleiterprobe mit einer Auflösung und Empfindlichkeit zeigt, die lange Zeit aufgrund physikalischer Gesetze als nahezu unmöglich galten. Das neu entwickelte Mikroskop gestattet es, auf den Nanometer genau gleichzeitig optische Spektren und das Höhenprofil einer Oberfläche zu vermessen. "Molekulare Stufen eines Halbleiterfilms leuchten und sind deutlich als helle 17 Nanometer breite Streifen zu erkennen. Daraus ergeben sich erstaunliche neue Erkenntnisse, die bisher mit keiner anderen Methode erhalten werden können", sagt Alfred Meixner. Die Ergebnisse beruhen auf einer Zusammenarbeit mit Ute Heinemeyer und Frank Schreiber vom Institut für Angewandte Physik der Universität Tübingen und Reinhard Scholz von der TU München.

 

 

Abb.: Oben: Topografische Messung eines Diindenoperylen-Films. Hell bedeutet hohe, dunkel bedeutet niedrige Gebiete. Unten: Überlagerung der topographischen und optischen Messung - letztere in Rot-Gelb-Tönen; je heller der Farbton, desto höher die Lichtintensität. (Bild: AG Meixner, Universität Tübingen)

 

Halbleiter aus organischen Dünnfilmen spielen eine wichtige Rolle in neuartigen elektronischen Anwendungen, zum Beispiel in organische Solarzellen zur Energiegewinnung aus Sonnenlicht oder in organischen Leuchtdioden (OLEDs) für biegsame hochauflösende Bildschirme. Ihre elektronischen und optischen Eigenschaften unterscheiden sich wesentlich von den Eigenschaften der organischen Moleküle, aus denen sie aufgebaut sind. Insbesondere die mikroskopische Struktur ist noch nicht gut verstanden, obwohl zum Beispiel molekulare Inseln, Kanten und Fehlstellen die Filmeigenschaften stark beeinflussen.

Genau dies macht das Tübinger Mikroskop sichtbar. Dazu wird eine äußerst feine Goldspitze bis auf ein bis drei Nanometer an die Halbleiteroberfläche herangebracht und gleichzeitig mit einem scharf fokussierten Laserstrahl beleuchtet. "Wir haben bei nanometergenauer Auflösung eine optische Signalverstärkung von bis zu einer Million erhalten", erklärt Meixner. "So eine hohe Verstärkung ist möglich, weil die Spitze im Fokus eines Parabolspiegels steht: Diese Kombination ergibt eine perfekte optische Antenne. Die Goldspitze konzentriert das Licht lokal in den nur Nanometer großen Spalt direkt zwischen Spitzenende und Probenoberfläche und erzeugt dort ein optisches Nahfeld, welches die Probe anregt. Photonen, die dort von der Probe erzeugt werden, gelangen auf dem umgekehrten Weg über die Spitze und den Parabolspiegel auf einen empfindlichen Detektor."

Die Nahfeldmessungen der Halbleiterfilme aus Diindenoperylen-Molekülen (DIP) ergaben, dass die Kanten der DIP-Nano-Terrassen leuchten: die Kanten sind nur eine bis drei Molekülschichten hoch und erscheinen als helle Streifen von etwa 17 Nanometer Breite. Dies liegt an Elektronenlochpaaren, sogenannten Exzitonen, die in dem Halbleiter DIP durch das Nahfeld der Spitze erzeugt und auch detektiert werden. "Wäre unsere Goldspitze nicht da, würden die Exzitonen hauptsächlich thermisch zerfallen", erklärt Meixner. "Dieser Durchbruch könnte dazu führen, dass die Nahfeldmikroskopie Eingang in die Materialforschung findet und dort zu grundlegenden neuen Erkenntnissen führt", sind sich Reinhard Scholz und Frank Schreiber einig.

Eberhard Karls Universität Tübingen


Weitere Infos

 AL

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen