22.05.2014

Präzise Grenzflächenberechnungen mit Supercomputer

Neue Simulationsmethode lässt mithilfe der „Finite-Size-Korrekturen" Grenzflächenspannungen besser bestimmen.

Computersimulationen spielen in der heutigen Zeit eine immer größere Rolle bei der Beschreibung und Entwicklung neuer Materialien. Aber trotz großer Fortschritte in der Computertechnik sind Simulationen in der statistischen Physik üblicherweise auf Systeme von wenigen 100.000 Teilchen beschränkt und damit um ein Vielfaches kleiner als typische Experimente. Die Wissenschaftler nutzen daher sogenannte „Finite-Size-Korrekturen", um aus vergleichsweise kleinen, simulierbaren Systemen makroskopische Größen korrekt zu bestimmen. Einem Team der Johannes Gutenberg-Universität Mainz ist es nun gelungen, das Verständnis dieser Korrekturen bei der Bestimmung von Grenzflächenspannungen zu verbessern und damit wesentlich genauere Vorhersagen zu ermöglichen.

Abb.: Unter Koexistenzbedinungen bilden Kristall (rot) und flüssige Phase (blau) Grenzflächen aus. Die gezeigte Simulationsbox enthält 3660 Teilchen mit Hartkugelwechselwirkung. Durch periodische Randbedingungen und Finite-Size-Scaling (systematische Variation der Boxgrösse) kann mittels Simulationen die Oberflächenspannung sehr genau bestimmt werden. (Bild: F. Schmitz, JGU)

Die Grenzflächenspannung ist für viele Phänomene wie zum Beispiel die Keimbildung von Wassertröpfchen in der Atmosphäre, die Kristallisation von Proteinen aus Lösungen oder das Wachstum und die Stabilität von Nanokristallen eine wichtige physikalische Kenngröße. Sie tritt zwischen verschiedenen Phasen eines Materials auf, also zwischen der festen, der flüssigen oder der gasförmigen Phase. Die Größe ist experimentell schwierig zu bestimmen, und verlässliche analytische Theorien fehlen oftmals auch. Deshalb ist es von großer Bedeutung, hierfür Computer-Simulationsmethoden zu entwickeln.

Den Mainzer Physikern Fabian Schmitz, Peter Virnau und Kurt Binder ist es durch den Einsatz einer neuartigen Simulationsmethode gelungen, die Natur der „Finite-Size-Korrekturen“ bei der Bestimmung von Grenzflächenspannungen zu verstehen. Diese Arbeit, die erst durch den Einsatz von mehreren Millionen CPU-Stunden auf dem Mainzer Supercomputer Mogon ermöglicht wurde, wird in Zukunft dazu beitragen, Grenzflächenspannungen mit höchster Präzision in Simulationen zu bestimmen.

Hochleistungsrechnen gewinnt an der Johannes Gutenberg-Universität Mainz immer mehr an Bedeutung. Voraussichtlich ab dem ersten Quartal 2016 wird der geplante neue Hochleistungsrechner Mogon II das aktuelle System ersetzen. Mogon II soll unter den Top-100 der weltweit schnellsten Hochleistungsrechner rangieren.

JGU / CT

Anbieter des Monats

Dr. Eberl MBE-Komponenten GmbH

Dr. Eberl MBE-Komponenten GmbH

Das Unternehmen wurde 1989 von Dr. Karl Eberl als Spin-off des Walter-Schottky-Instituts der Technischen Universität München gegründet und hat seinen Sitz in Weil der Stadt bei Stuttgart.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen