14.11.2023

Quetschung eines dunklen Kernspinzustands

Robuster Vielteilchenzustand wird nach seiner Ausbildung immun gegen Beleuchtung.

Quanten­mechanische Zustände, die aus vielen Teilchen bestehen, sind wesentlich robuster gegenüber Störungen, die in diesem Zustand gespeicherte Information bedrohen, als entsprechende Einteilchen-Zustände. Vor mehr als zwanzig Jahren haben Forschende einen besonders robusten Vielteilchen­zustand von Kernspins – den Drehimpulsen von Atomkernen – theoretisch vorhergesagt: Dieser dunkle Kernspin­zustand entsteht durch Bestrahlung mit Laserlicht, wird nach seiner Ausbildung aber immun gegen Beleuchtung und damit dunkel. Einem inter­nationalen Team unter Beteiligung von Forschenden der Fakultät Physik der TU Dortmund ist es nun gelungen, diesen Zustand experimentell zu demonstrieren.

Abb.: Verteilungsfunktion der Kernspins vor der Beleuchtung mit dem Laser und...
Abb.: Verteilungsfunktion der Kernspins vor der Beleuchtung mit dem Laser und nach Beleuchtung und Ausbildung des dunklen Zustands.
Quelle: E. Kirstein et al., TU Dortmund / NPG

Die Forschenden haben zunächst einen geeigneten Kristall aus der Gruppe der Perowskite, Formami­dinium-Blei-Tribromid, chemisch synthetisiert. Polari­sierte Lichtpulse orientieren dann die Spins von positiv geladenen Ladungs­trägern in diesem Kristall. Kommen die positiven Ladungs­träger in Kontakt mit Bleikernen im Kristall, übertragen sie ihren Spin an die Kernspins der Bleiatome. Durch diese Wechselwirkung entsteht schließlich ein kollektiver Kernspin­zustand. Die beteiligten Kernspins – mindestens 35 davon – agieren demnach nicht mehr unabhängig voneinander, wie eine detaillierte Analyse zeigt, sondern sind miteinander verschränkt.

Durch die Wechsel­wirkung wurde im Experiment die Orientierung der Kernspins der Bleiatome ganz spezifisch geändert. Während sie vor der Beleuchtung mit dem Laserlicht ungeordnet war – geprägt von der quanten­mechanischen Unschärferelation – orientierten sich die Kernspins nach hinreichender Beleuchtung bevorzugt entlang der Richtung der optischen Beleuchtung durch den Laser. Zudem fluktuierten die Kernspins in ihrer Orientierung deutlich weniger – sowohl in dieser longi­tudinalen Richtung als auch transversal senkrecht zur Beleuchtungs­richtung. Eine solche Verringerung der Fluk­tuationen eines quanten­mechanischen Zustands nennt man Quetschung. Das Forschungsteam konnte damit erstmals die Quetschung eines solchen kollektiven Kernspin­zustands beobachten.

Durch die Quetschung wurde der vorhergesagte dunkle Kernspin­zustand erreicht, der unempfindlich gegen eine weitere optische Anregung ist. Wegen der daraus resultierenden Robustheit könnte er genutzt werden, um quantenmechanische Informationen zu speichern – eine wichtige Voraussetzung für viele Quanten­technologien wie einen Quantencomputer.

TU Dortmund / JOL

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Veranstaltung

Spektral vernetzt zur Quantum Photonics in Erfurt

Spektral vernetzt zur Quantum Photonics in Erfurt

Die neue Kongressmesse für Quanten- und Photonik-Technologien bringt vom 13. bis 14. Mai 2025 internationale Spitzenforschung, Industrieakteure und Entscheidungsträger in der Messe Erfurt zusammen

Meist gelesen

Themen