Rasant kalkuliertes Plasma
Deutsche Physiker planen komplexe Simulationen mit dem schnellsten Supercomputer der Welt.
Der weltweit schnellste Supercomputer entsteht derzeit im US-Bundesstaat Tennessee: Die Unternehmen Cray und AMD installieren ihn bis zum Jahr 2021 im Auftrag des US-Energieministeriums am Oak Ridge National Laboratory. Dank einer innovativen Grafikprozessor-Architektur soll „Frontier“ über eineinhalb Trillionen Fließkomma-Rechenaufgaben pro Sekunde lösen können. Er stößt damit als wohl erster Rechner in die Exaflops-Klasse vor. Physiker des Helmholtz-Zentrums Dresden-Rossendorf HZDR werden zu den ersten Nutzern gehören. Sie bilden eines von acht ausgewählten internationalen Teams. In Zusammenarbeit mit der Projektleiterin Sunita Chandrasekaran von der University of Delaware wollen die Dresdner wissenschaftliche Pilotaufgaben entwickeln und den neuartigen Supercomputer nutzerfreundlicher für Forscher aus aller Welt machen.
Die amerikanisch-sächsische Zusammenarbeit baut dabei auf dem Vertrauen auf, das sich die Dresdner mit ihrer Erfahrung in Teilchen-Simulationen sowie mit der Supercomputer-Programmierung international erworben haben. „Frontier wird eine Schallmauer durchbrechen“, schätzt Michael Bussmann, Leiter der Abteilung CASUS – Center for Advanced Systems Understanding am HZDR ein. „Wir können stolz darauf sein, dass uns die Kollegen aus Oak Ridge eingeladen haben, sie auf diesem Weg ins wissenschaftliche und technologische Neuland zu begleiten“, sagt Guido Juckeland, der im HZDR die Abteilung für computergestützte Wissenschaft leitet.
Um ihren neuartigen Supercomputer rasch für die Wissenschaft nutzbar zu machen, haben die Amerikaner das Center for Accelerated Application Readiness (CAAR) eingerichtet. Die zuständige Oak Ridge Leadership Computing Facility (OLCF) des US-Energieministeriums hat nun acht Expertengruppen aus aller Welt eingeladen, in der Startphase von Frontier mitzuhelfen. Jede Gruppe soll Simulationen zum Laufen bringen, die so nur an einem Supercomputer der Exaflops-Klasse möglich sind. Zugleich soll die jeweilige Simulation ein besonders herausforderndes, wissenschaftliches Problem lösen helfen. Eines dieser Teams ist der Verbund der University of Delaware und des HZDR.
Die US-Kollegen haben diese internationalen Kooperationen auch deshalb erbeten, weil ihr Frontier ein paar Besonderheiten hat. Dazu gehören dessen digitale Bausteine: Erstmals kommen für einen Hochleistungsrechner dieser Größenordnung Grafikprozessoren des US-Unternehmens AMD zum Einsatz. Sie gelten zwar in der Welt der normalen PCs als sehr leistungsstark. Allerdings gibt es weltweit keine Erfahrungen damit, Exaflops-Supercomputer aus diesen speziellen Chips zu bauen. Die Dresdner Experten sollen dabei helfen, die zu erwartenden Anfangsprobleme in den Griff zu bekommen.
Denn die Gruppe um Michael Bussmann hat über Jahre hinweg eine besondere Expertise für wissenschaftliche Software entwickelt. Mit ihren maßgeschneiderten Programmen können die Forscher das Zusammenspiel von Ionen und anderen winzigen Teilchen an Neutronensternen oder in Superlaser-Experimenten besonders effizient simulieren – und das auf Supercomputern mit sehr verschiedenen Bauweisen. Ihre Software-Pakete „PIConGPU“ – Partikel-Simulationen in Zellen auf Grafikprozessoren – und „Alpaka“ gelten dabei als wegweisend. „Durch unsere Codes laufen solche Simulationen auf ganz unterschiedlichen Hardware-Plattformen sehr effizient“, schätzt Bussmann ein. Ihre Programmbibliotheken haben die Forscher bereits an Hochleistungsrechner angepasst, die mit Intel-, AMD- oder ARM-Hauptprozessoren rechnen oder aus Nvidia-Grafikprozessoren gebaut sind. Für Frontier optimieren sie ihre Software nun für Supercomputer aus AMD-Grafikchips – dies ist technologisches Neuland.
Die Simulationssoftware „PIConGPU“ soll aktuelle Fragen in der Beschleunigerphysik beantworten. So arbeiten Alexander Debus und Thomas Kluge vom Institut für Strahlenphysik des HZDR an innovativen Konzepten für Hochintensitäts-Laser, mit denen sich leichte Elektronen und schwere Ionen weit effizienter und raumsparender beschleunigen lassen als es die heutigen Linear- und Ringbeschleuniger vermögen. Dabei können die lasergetriebenen Plasmabeschleuniger im Labormaßstab die maximale Elektronen-Energie kilometerlanger Linearbeschleuniger erreichen.
„Wir denken, dass wir damit Strahlenergien jenseits von zehn Gigaelektronenvolt in einem Durchgang erreichen können, ohne den Elektronenbeschleuniger mehrfach neu ansetzen zu müssen“, erklärt Debus. „In Simulationen wollen wir zeigen, dass wir die alten Beschränkungen überwinden können. Dafür sind aber sehr leistungsfähige Rechner wie Frontier notwendig.“ Per Supercomputer möchten Debus und Kluge die komplexen physikalischen Phänomene während solch eines langen Beschleuniger-Durchlaufs untersuchen. Auch der erste Prototyp der neuen Laser-Beschleuniger wird zunächst in der virtuellen Supercomputer-Welt gebaut, bevor die Konstruktion in der physischen Welt startet. Denkbare Einsatzfelder für solche lasergetriebenen Ionen- und Elektronenbeschleuniger sind zum Beispiel die Behandlung von Krebserkrankungen mittels Protonentherapie, die Teilchenforschung oder auch die Astrophysik.
HZDR / JOL
Weitere Infos
- CASUS – Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf HZDR
- Supercomputer Frontier, Oak Ridge National Laboratory, Oak Ridge, USA