Rechnen mit Fraktonen
Mögliche Quasiteilchen entsprechen Bruchteilen von Spinanregungen ohne kinetische Energie.
Ein neues Quasiteilchen mit interessanten Eigenschaften ist aufgetaucht – vorerst allerdings nur in theoretischen Modellierungen von Festkörpern mit bestimmten magnetischen Eigenschaften. Anders als erwartet, bringen Quantenfluktuationen das Quasiteilchen jedoch nicht deutlicher zum Vorschein, sondern verschmieren seine Signatur, zeigt nun ein internationales Team am Helmholtz Zentrum Berlin HZB und der Freien Universität Berlin.
Anregungen in Festkörpern lassen sich mathematisch auch als Quasiteilchen abbilden, zum Beispiel können Gitterschwingungen, die mit der Temperatur zunehmen, gut als Phononen beschrieben werden. Rein mathematisch sind jedoch auch Quasiteilchen möglich, die bislang noch nie in einem Material beobachtet wurden. Wenn solche theoretischen Quasiteilchen interessante Talente besitzen, dann lohnt sich ein näherer Blick. Zum Beispiel auf die Fraktonen. Fraktonen sind Bruchteile von Spinanregungen und dürfen keine kinetische Energie besitzen. Das bedeutet: Sie sind vollkommen ortsfest.
Damit sind Fraktonen neue Kandidaten für die perfekt sichere Informationsspeicherung. Zumal sie sich unter besonderen Bedingungen dann doch versetzen lassen, nämlich Huckepack auf einem weiteren Quasiteilchen. „Die Fraktonen sind aus einer mathematischen Erweiterung der Quantenelektrodynamik entstanden, in denen elektrische Felder nicht als Vektoren, sondern als Tensoren behandelt werden – ganz losgelöst von realen Materialien“, sagt Johannes Reuther, theoretischer Physiker an der Freien Universität Berlin.
Um Fraktonen in Zukunft auch experimentell beobachten zu können, ist es nötig, möglichst einfache Modellsysteme zu finden: Daher modellierte man zunächst oktaedrische Kristallstrukturen mit antiferromagnetisch wechselwirkenden Eckatomen. Dabei zeigten sich besondere Muster mit verschiedenen Knotenpunkten in den Spin-Korrelationen, die im Prinzip in einem realen Material auch experimentell mit Neutronenexperimenten nachweisbar sein müssten. „Die Spins wurden in bisherigen Arbeiten jedoch wie klassische Vektoren behandelt, ohne Berücksichtigung von Quantenfluktuationen“, sagt Reuther.
Deshalb hat nun Reuther zusammen mit Yasir Iqbal vom Indian Institute of Technology in Chennai, Indien und seinem Doktoranden Nils Niggemann erstmals Quantenfluktuationen in die Berechnung dieses oktaedrischen Festkörpersystems mit aufgenommen. Es handelt sich um sehr aufwändige numerische Berechnungen, die grundsätzlich in der Lage sind, Fraktonen abzubilden. „Das Ergebnis hat uns überrascht, denn tatsächlich sehen wir, dass Quantenfluktuationen die Fraktonen nicht deutlicher hervortreten lassen, sondern im Gegenteil, vollständig verwischen, sogar am absoluten Nullpunkt der Temperatur“, sagt Niggemann.
Im nächsten Schritt wollen die drei theoretischen Physiker eine Modellierung entwickeln, in der sich Quantenfluktuationen hoch- oder runterregeln lassen. Eine Art Zwischenwelt zwischen der klassischen Festkörperphysik und den bisherigen Simulationen, in der sich die erweiterte quantenelektrodynamische Theorie mit ihren Fraktonen genauer untersuchen lässt.
Noch ist kein Material bekannt, das Fraktonen zeigt. Aber wenn die nächsten Modellierungen genauere Hinweise geben, wie Kristallstruktur und magnetische Wechselwirkungen beschaffen sein müssten, dann könnten Teams aus der Experimentalphysik damit beginnen, solche Materialien zu entwerfen und durchzumessen. „In den nächsten Jahren wird es sicher noch keine Anwendung dieser Erkenntnisse geben, aber vielleicht in den kommenden Dekaden und dann wäre es der berühmte Quantensprung, mit wirklich neuen Eigenschaften“, sagt Reuther.
HZB / JOL