28.08.2013

Scherwellen in Echtzeit vermessen

Direkte Beobachtung subduzierender kontinentaler Kruste bei der Kollision zweier Kontinente.

Erdbebenschäden an Gebäuden entstehen vorwiegend durch Scherwellen, die ihre Energie, vom Erdbeben ausgehend, auf die Häuser übertragen. Diese Scherwellen Untergrund und Topographie des Geländes beeinflussen die Scherwellen maßgeblich. Eine genaue Kenntnis der Geländeform und der oberflächennahen Untergrundstruktur ist daher eine wichtige Voraussetzung für eine lokale Gefährdungseinschätzung und zur Beurteilung von Bodeneffekten, die am Standort das Beben verstärken können. Einem Team von Wissenschaftlern des Deutschen GeoForschungsZentrums GFZ ist es nun mittels eines neu entwickelten seismischen Tomographieverfahrens gelungen, komplexe Untergrundstrukturen im Gelände nahezu in Echtzeit abzubilden.

Abb.: Hangrutschung von Papan, Süd-Kirisistan. (Bild: M.Pilz, GFZ)

Das Verfahren basiert einzig auf der Aufzeichnung und Auswertung des immer vorhandenen seismischen Umgebungsrauschens. „Dazu gehören kaum spürbare, kleine Erdbeben ebenso wie durch den Mensch und die Natur angeregte Bodenschwingungen“, erläutert Marco Pilz vom GFZ. Mithilfe dieser Signale lässt sich ein komplexes Bild des Untergrundes gewinnen. Veränderungen des Untergrunds durch Erdbeben oder Hangrutsche stehen einer Erfassung und Überwachung in Echtzeit zur Verfügung.

„Das Neue an unserer Methode ist zum einen eine direkte Bestimmung der Scherwellengeschwindigkeit. Zum anderen arbeiten wir – im Gegensatz zu vielen anderen Studien – auf der lokalen kleinskaligen Ebene“, führt Pilz weiter aus. Das Verfahren wurde bereits erfolgreich eingesetzt: Zentralasien ist an vielen Stellen durch Hangrutsche gefährdet. Da üblicherweise bei einem Hangrutsch vor dem Rutschvorgang ein starker Abfall der Scherwellengeschwindigkeit eintritt, kann das neue Verfahren dies nahezu in Echtzeit erfassen und bietet daher auch die Möglichkeit der Überwachung von Hangrutschungen.

Weitere Anwendungsmöglichkeiten ergeben sich in der Erforschung von Erdbebenrisiken. Die Autoren konnten eine genaue Struktur für ein Teilstück der Issyk-Ata-Verwerfung an der südlichen Stadtgrenze von Bischkek, der kirgisischen Hauptstadt mit rund 900.000 Einwohnern, kartieren und zeigen, dass nahe der Oberfläche eine Aufspaltung in zwei Verwerfungsäste vorliegt. Das kann Auswirkungen auf die Bruchgeschwindigkeit oder ein eventuelles Stoppen des Bruchs der Verwerfung haben.

Zentralasien ist flächendeckend seismisch gefährdet, die damit einhergehenden Prozesse und Risiken werden von Zentralinstitut für Angewandte Geowissenschaften (CAIAG) in Bishkek untersucht, einer gemeinsamen Einrichtung von GFZ und der kirgisischen Regierung.

Abb.: Das Pamir-Gebirge befindet sich im nördlichsten Teil der Kollisionszone von Indien und Eurasien. An der Kollisionszone treten sowohl flache als auch tiefe Erdbeben auf (weiße Kreise). (Bild: GFZ)

Der Pamir Tienshan liegt im Nordwesten der zentralasiastischen Gebirge und ist Ergebnis des Zusammenstoßes zweier Platten: durch die Kontinent-Kontinent-Kollision von Indien mit Eurasien faltet es sich hier als Hochgebirge von über 7000 Metern auf. Der Zusammenstoß dauert bis heute an, mit der Folge, dass die Erdkruste an vielen Stellen bricht. Erdbeben sind das Resultat.

Eine zweite Arbeitsgruppe von GFZ-Wissenschaftlern hat zusammen mit Wissenschaftlern aus Tadschikistan und Forschern des CAIAG den tektonischen Kollisionsvorgang in der Region untersucht. Erstmals konnte hier beobachtet werden, dass kontinentale Kruste bei der Kollision zweier Kontinente in den Erdmantel abtaucht. Wie die Wissenschaftler berichten, war die Subduktion von kontinentaler Kruste vorher noch nie direkt beobachtet worden.

Hierfür werteten sie mit einem speziellen seismologischen Verfahren (der sogenannten Receiver Function-Methode) Seismogramme aus, die aus einem zwei Jahre andauernden Feldexperiment im Tien Shan- und Pamir-Hindu Kush-Gebiet stammen. Die Kollision der Indischen und der Eurasischen Platte nimmt dort ein extremes Ausmaß an.

„Diese extremen Bedingungen führen dazu, dass die Eurasische Unterkruste in südliche Richtung in den Erdmantel subduziert“, erklärt Felix Schneider vom GFZ. „Solch ein Abtauchen beobachtet man normalerweise beim Zusammenstoß von ozeanischer mit kontinentaler Kruste, da die Ozeanböden schwerer sind als die kontinentalen Gesteine.“

Erste Hinweise hatten sich durch Funde metamorpher Gesteine an der Erdoberfläche ergeben, die unter ultrahohem Druck im Erdmantel entstanden sein mussten und die damit als Indizien für Subduktionsprozesse gelten. Zudem stellte sich die Frage, wie das Auftreten zahlreicher Erdbeben in ungewöhnlicher Tiefe von bis zu 300 Kilometern im oberen Erdmantel zu erklären ist. Durch die Beobachtung des subduzierenden Teils der Eurasischen Unterkruste konnten die Forscher dieses Rätsel lösen.

GFZ / PH

Veranstaltung

Spektral vernetzt zur Quantum Photonics in Erfurt

Spektral vernetzt zur Quantum Photonics in Erfurt

Die neue Kongressmesse für Quanten- und Photonik-Technologien bringt vom 13. bis 14. Mai 2025 internationale Spitzenforschung, Industrieakteure und Entscheidungsträger in der Messe Erfurt zusammen

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Photo
08.11.2024 • NachrichtForschung

Musik als Zeitreihe

Analyse von musikalischen Tonhöhensequenzen ergibt interessante Unterschiede zwischen verschiedenen Komponisten und Musikstilen.

Themen