Schwingender Phasenwechsel
Doppelte Laserpulse schalten zwischen metallischer und isolierender Phase.
Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der Femtochemie zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren.
Das Team um Jan Gerrit Horstmann und Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall anschließend auf -220 Grad Celsius ab. Während die Indiumatome bei Raumtemperatur metallisch leitende Ketten auf der Oberfläche bilden, ordnen sie sich bei solch niedrigen Temperaturen spontan zu elektrisch isolierenden Sechsecken um. Dieser Prozess wird als Übergang zwischen zwei Phasen – der metallischen und der isolierenden – bezeichnet und kann mit Laserpulsen geschaltet werden. In ihren Experimenten beleuchteten die Forscher nun die kalte Oberfläche mit zwei kurzen Laserpulsen und beobachteten direkt im Anschluss die Anordnung der Indiumatome mit Hilfe eines Elektronenstrahls. Dabei fanden sie heraus, dass der Rhythmus der Laserpulse einen großen Einfluss darauf hat, wie effizient die Oberfläche in den metallischen Zustand geschaltet werden kann.
Dieser Effekt lässt sich durch Schwingungen der Atome an der Oberfläche erklären, wie Jan Gerrit Horstmann erläutert: „Um von dem einen in den anderen Zustand zu gelangen, müssen sich die Atome in unterschiedliche Richtungen verschieben und dabei ähnlich einer Achterbahnfahrt eine Art Hügel überwinden. Ein einzelner Laserpuls reicht hierfür jedoch nicht aus, und die Atome schwingen lediglich hin und her. Wie bei einer Schaukelbewegung können wir jedoch mit einem zweiten Puls zum richtigen Zeitpunkt genug Energie in das System geben, um den Übergang zu ermöglichen.“ In ihren Experimenten beobachteten die Physiker gleich mehrere Schwingungen der Atome, die die Umwandlung in ganz unterschiedlicher Weise beeinflussen.
Ihre Erkenntnisse tragen nicht nur zum grundlegenden Verständnis von schnellen Strukturänderungen bei, sondern eröffnen auch weitergehende Perspektiven für die Oberflächenphysik. „Unsere Ergebnisse zeigen neue Strategien auf, um die Umwandlung von Lichtenergie auf der atomaren Skala zu kontrollieren“, sagt Ropers, Direktor am Max-Planck-Institut für biophysikalische Chemie. „Das gezielte Steuern der Bewegungen von Atomen in Festkörpern mit Hilfe von Laserpuls-Sequenzen könnte es darüber hinaus ermöglichen, bisher unzugängliche Strukturen mit vollkommen neuen physikalischen und chemischen Eigenschaften zu erreichen.“
U. Göttingen / JOL
Weitere Infos
- Originalveröffentlichung
J. G. Horstmann et al.: Coherent control of a surface structural phase transition, Nature 583, 232 (2020); DOI: 10.1038/s41586-020-2440-4 - Nano-Optik & Ultraschnelle Dynamik, Max-Planck-Institut für biophysikalische Chemie & Universität Göttingen