Schwingungen in Weyl-Halbmetallen
Änderungen der elektronischen Struktur in Wolframtellurid sichtbar gemacht.
Topologische Materialien zeichnen sich durch besondere elektronische Eigenschaften aus, die außerdem sehr robust gegenüber äußeren Einflüssen sind. Zu dieser Materialgruppe gehört auch Wolframditellurid. Hier lässt sich ein solcher topologisch geschützter Zustand mit Hilfe spezieller Laserpulse innerhalb weniger Pikosekunden aufbrechen und somit verändern. Das könnte eine zentrale Voraussetzung sein, um extrem schnelle, optoelektronische Schalter zu realisieren. Die Änderungen der elektronischen Eigenschaften dieses Materials konnten Physiker der Christian-Albrechts-Universität zu Kiel in Kooperation mit Forschungsgruppen des Max-Planck-Instituts für Chemische Physik fester Stoffe in Dresden, der Tsinghua University in Peking und der ShanghaiTech University jetzt erstmals in Experimenten in Echtzeit beobachten.
Mit Laserpulsen brachten die Forscher die Atome in einer Probe Wolframditellurid kontrolliert zum Schwingen und konnten die dadurch ausgelösten Änderungen der elektronischen Eigenschaften mit hochpräzisen Messungen in Echtzeit verfolgen. „Lassen sich die durch den Laser ausgelösten Änderungen wieder rückgängig machen, hat man im Grunde einen Schalter, der sich optisch aktivieren lässt und der zwischen verschiedenen elektronischen Zuständen wechseln kann“, sagt Michael Bauer von der Universität Kiel. Auf so einen Schaltprozess ließ bereits eine frühere Studie schließen, in der Forschere aus den USA kürzlich die atomaren Bewegungen in Wolframditellurid direkt beobachten konnten. Die Kieler Physiker konzentrierten sich nun auf das Verhalten der Elektronen und wie sich die elektronischen Eigenschaften in demselben Material durch die Bestrahlung mit Laserpulsen ändern.
„Einige Elektronen in Wolframditellurid sind extrem beweglich, was sie zu hervorragenden Informationsträgern für elektronische Anwendungen macht. Das liegt daran, dass sie sich wie Weyl-Fermionen verhalten“, erklärt Doktorandin Petra Hein die ungewöhnlichen Eigenschaften des Weyl-Halbmetalls. Weyl-Fermionen sind masselose Teilchen mit speziellen Eigenschaften, die bisher nur indirekt als Quasi-Teilchen in Festkörpern wie Wolframditellurid beobachtet werden konnten. „Wir konnten jetzt zum ersten Mal Änderungen in den Bereichen der elektronischen Struktur sichtbar machen, in denen sich diese Weyl-Eigenschaften zeigen."
Um die kaum sichtbaren Änderungen der elektronischen Eigenschaften zu erfassen, braucht es einen hochempfindlichen experimentellen Aufbau, extrem präzise Messungen sowie eine aufwendige Analyse der gewonnenen Daten. In den vergangenen Jahren konnte das Kieler Forschungsteam so eine experimentelle Apparatur mit der notwendigen Langzeitstabilität entwickeln. Mit den dort erzeugten Laserpulsen versetzten sie die Atome im Inneren einer Probe Wolframditellurid in Schwingung. Es entstanden verschiedene, sich überlagernde Schwingungszustände, die wiederum die elektronischen Eigenschaften des Materials änderten. „Von einer dieser Schwingungen war bekannt, dass sie die elektronischen Weyl-Eigenschaften ändert. Wir wollten herausfinden, wie genau diese Änderung aussieht“, sagt Hein.
Um diesen konkreten Änderungsprozess zu beobachten, bestrahlte das Forschungsteam das Material nach wenigen Pikosekunden mit einem zweiten Laserpuls. Er löste Elektronen aus der Probe heraus, von denen sich auf die elektronische Struktur des Materials rückschließen ließ. „Durch die kurze Belichtungszeit von nur einer Zehntel Pikosekunden erhalten wir eine Momentaufnahme des elektronischen Zustandes des Materials. Aus vielen solcher Einzelbilder können wir einen Film erstellen und so verfolgen, wie das Material auf die Anregung durch den ersten Laserpuls reagiert“, erklärt Stephan Jauernik die Messmethode.
Die Aufnahme eines einzigen solchen Datensatzes über den extrem kurzen Änderungsprozess dauerte typischerweise eine Woche. Eine Vielzahl solcher Datensätze wertete das Kieler Forschungsteam mit einem neuentwickelten Analyseansatz aus und konnten so die Änderungen in den elektronischen Weyl-Eigenschaften von Wolframditellurid sichtbar machen. „Unsere Ergebnisse belegen das empfindliche und sehr selektive Wechselspiel zwischen den Schwingungsbewegungen der Atome des Festkörpers und den eigentümlichen elektronischen Eigenschaften von Wolframditellurid“, fasst Bauer zusammen. Darauf aufbauende Forschung soll untersuchen, ob derartige elektronische Schaltprozesse noch schneller – direkt durch den anregenden Laserpuls – ausgelöst werden können, wie es für andere topologische Materialien bereits theoretisch vorhergesagt wurde.
CAU Kiel / JOL
Weitere Infos
- Originalveröffentlichung
P. Hein et al.: Mode-resolved reciprocal space mapping of electron-phonon interaction in the Weyl semimetal candidate Td-WTe2, Nat. Commun. 11, 2613 (2020); DOI: 10.1038/s41467-020-16076-0 - Kiel Nano, Surface and Interface Science (KINSIS), Christian-Albrechts-Universität, Kiel